{"title":"基于模型的建筑热质利用和空调负荷灵活性提升研究","authors":"Yue Sun, Tianyi Zhao, Shan Lyu","doi":"10.1007/s12273-024-1143-4","DOIUrl":null,"url":null,"abstract":"<p>Building air conditioning systems (ACs) can contribute to the stable operation of power grids by participating in peak load shaving programs, but the participants need a fast and accurate zone temperature prediction model, e.g., the detailed room thermal-resistance (RC) model, to improve peak shaving effect and avoid obvious thermal discomfort. However, when applying the detailed room RC model to multi-zone buildings, conventional studies mostly consider the heat transfer among neighboring rooms, which contributes little to the prediction accuracy improvement, but leads to complicated model structure and heavy computation. Thus, a distributed RC model is developed for multi-zone buildings in this study. Compared to conventional models, the proposed model considers the total heat transfer between the building and the air, and ignores the heat transfer among indoor air in neighboring rooms through internal walls with heavy thermal mass, thereby having comparable temperature prediction accuracy, simpler structure, and stronger robustness. Based on the model, the effectiveness of passive pre-cooling strategies in reducing the air conditioning loads during peak periods is investigated. Results indicate that the thermal insulation performance of opaque building envelope is quite important to the flexibility enhancement of air conditioning loads. With an uninsulated building envelope, passive pre-cooling is useless for the peak load shaving. In comparison, well insulated opaque building envelope enables the building thermal mass to be utilized through passive pre-cooling, which leads to the air conditioning loads during peak periods being further reduced by about 12%.</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"50 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based investigation on building thermal mass utilization and flexibility enhancement of air conditioning loads\",\"authors\":\"Yue Sun, Tianyi Zhao, Shan Lyu\",\"doi\":\"10.1007/s12273-024-1143-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Building air conditioning systems (ACs) can contribute to the stable operation of power grids by participating in peak load shaving programs, but the participants need a fast and accurate zone temperature prediction model, e.g., the detailed room thermal-resistance (RC) model, to improve peak shaving effect and avoid obvious thermal discomfort. However, when applying the detailed room RC model to multi-zone buildings, conventional studies mostly consider the heat transfer among neighboring rooms, which contributes little to the prediction accuracy improvement, but leads to complicated model structure and heavy computation. Thus, a distributed RC model is developed for multi-zone buildings in this study. Compared to conventional models, the proposed model considers the total heat transfer between the building and the air, and ignores the heat transfer among indoor air in neighboring rooms through internal walls with heavy thermal mass, thereby having comparable temperature prediction accuracy, simpler structure, and stronger robustness. Based on the model, the effectiveness of passive pre-cooling strategies in reducing the air conditioning loads during peak periods is investigated. Results indicate that the thermal insulation performance of opaque building envelope is quite important to the flexibility enhancement of air conditioning loads. With an uninsulated building envelope, passive pre-cooling is useless for the peak load shaving. In comparison, well insulated opaque building envelope enables the building thermal mass to be utilized through passive pre-cooling, which leads to the air conditioning loads during peak periods being further reduced by about 12%.</p>\",\"PeriodicalId\":49226,\"journal\":{\"name\":\"Building Simulation\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12273-024-1143-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-024-1143-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Model-based investigation on building thermal mass utilization and flexibility enhancement of air conditioning loads
Building air conditioning systems (ACs) can contribute to the stable operation of power grids by participating in peak load shaving programs, but the participants need a fast and accurate zone temperature prediction model, e.g., the detailed room thermal-resistance (RC) model, to improve peak shaving effect and avoid obvious thermal discomfort. However, when applying the detailed room RC model to multi-zone buildings, conventional studies mostly consider the heat transfer among neighboring rooms, which contributes little to the prediction accuracy improvement, but leads to complicated model structure and heavy computation. Thus, a distributed RC model is developed for multi-zone buildings in this study. Compared to conventional models, the proposed model considers the total heat transfer between the building and the air, and ignores the heat transfer among indoor air in neighboring rooms through internal walls with heavy thermal mass, thereby having comparable temperature prediction accuracy, simpler structure, and stronger robustness. Based on the model, the effectiveness of passive pre-cooling strategies in reducing the air conditioning loads during peak periods is investigated. Results indicate that the thermal insulation performance of opaque building envelope is quite important to the flexibility enhancement of air conditioning loads. With an uninsulated building envelope, passive pre-cooling is useless for the peak load shaving. In comparison, well insulated opaque building envelope enables the building thermal mass to be utilized through passive pre-cooling, which leads to the air conditioning loads during peak periods being further reduced by about 12%.
期刊介绍:
Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.