数据库辅助自动学习

Hielke Walinga, Robert Baumgartner, Sicco Verwer
{"title":"数据库辅助自动学习","authors":"Hielke Walinga, Robert Baumgartner, Sicco Verwer","doi":"arxiv-2406.07208","DOIUrl":null,"url":null,"abstract":"This paper presents DAALder (Database-Assisted Automata Learning, with Dutch\nsuffix from leerder), a new algorithm for learning state machines, or automata,\nspecifically deterministic finite-state automata (DFA). When learning state\nmachines from log data originating from software systems, the large amount of\nlog data can pose a challenge. Conventional state merging algorithms cannot\nefficiently deal with this, as they require a large amount of memory. To solve\nthis, we utilized database technologies to efficiently query a big trace\ndataset and construct a state machine from it, as databases allow to save large\namounts of data on disk while still being able to query it efficiently.\nBuilding on research in both active learning and passive learning, the proposed\nalgorithm is a combination of the two. It can quickly find a characteristic set\nof traces from a database using heuristics from a state merging algorithm.\nExperiments show that our algorithm has similar performance to conventional\nstate merging algorithms on large datasets, but requires far less memory.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Database-assisted automata learning\",\"authors\":\"Hielke Walinga, Robert Baumgartner, Sicco Verwer\",\"doi\":\"arxiv-2406.07208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents DAALder (Database-Assisted Automata Learning, with Dutch\\nsuffix from leerder), a new algorithm for learning state machines, or automata,\\nspecifically deterministic finite-state automata (DFA). When learning state\\nmachines from log data originating from software systems, the large amount of\\nlog data can pose a challenge. Conventional state merging algorithms cannot\\nefficiently deal with this, as they require a large amount of memory. To solve\\nthis, we utilized database technologies to efficiently query a big trace\\ndataset and construct a state machine from it, as databases allow to save large\\namounts of data on disk while still being able to query it efficiently.\\nBuilding on research in both active learning and passive learning, the proposed\\nalgorithm is a combination of the two. It can quickly find a characteristic set\\nof traces from a database using heuristics from a state merging algorithm.\\nExperiments show that our algorithm has similar performance to conventional\\nstate merging algorithms on large datasets, but requires far less memory.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.07208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.07208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 DAALder(数据库辅助自动机学习,荷兰语后缀为 leerder),这是一种用于学习状态机或自动机的新算法,特别是确定性有限状态自动机(DFA)。从软件系统的日志数据中学习状态机时,大量的日志数据可能会带来挑战。传统的状态合并算法需要占用大量内存,因此无法有效处理这一问题。为了解决这个问题,我们利用数据库技术来有效地查询大型跟踪数据集,并从中构建状态机,因为数据库可以将大量数据保存在磁盘上,同时还能有效地进行查询。实验表明,我们的算法在大型数据集上的性能与传统的状态合并算法相似,但所需内存要少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Database-assisted automata learning
This paper presents DAALder (Database-Assisted Automata Learning, with Dutch suffix from leerder), a new algorithm for learning state machines, or automata, specifically deterministic finite-state automata (DFA). When learning state machines from log data originating from software systems, the large amount of log data can pose a challenge. Conventional state merging algorithms cannot efficiently deal with this, as they require a large amount of memory. To solve this, we utilized database technologies to efficiently query a big trace dataset and construct a state machine from it, as databases allow to save large amounts of data on disk while still being able to query it efficiently. Building on research in both active learning and passive learning, the proposed algorithm is a combination of the two. It can quickly find a characteristic set of traces from a database using heuristics from a state merging algorithm. Experiments show that our algorithm has similar performance to conventional state merging algorithms on large datasets, but requires far less memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query Learning of Advice and Nominal Automata Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny Run supports and initial algebra supports of weighted automata Alternating hierarchy of sushifts defined by nondeterministic plane-walking automata $\mathbb{N}$-polyregular functions arise from well-quasi-orderings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1