{"title":"稳态运行条件下的燃料棒强度计算","authors":"S. S. Lys","doi":"10.1007/s11003-024-00814-6","DOIUrl":null,"url":null,"abstract":"<p>The results of thermal calculations of the part of the fuel assembly of the active zone of the VVER-1000 reactor in the stationary mode of operation make it possible to evaluate the mechanical state of the fuel rod cladding, to understand the influence of reactor control methods on the strength and the design acceptance criteria. The main principles of the evaluation of mechanical characteristics of VVER-1000 fuel rods using the START-3 code are presented. The results of the prediction of the mechanical characteristics of the VVER-1000 fuel rods during the 4-year cycle in stationary mode under normal operating conditions and under their violation are illustrated. The maximum values of stress in the fuel rod in the stationary mode of operation are in the range of 60–80 MPa, which cannot cause depressurization of the fuel rod.</p>","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of Fuel Rod Strength Under Steady-State Operating Condition\",\"authors\":\"S. S. Lys\",\"doi\":\"10.1007/s11003-024-00814-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of thermal calculations of the part of the fuel assembly of the active zone of the VVER-1000 reactor in the stationary mode of operation make it possible to evaluate the mechanical state of the fuel rod cladding, to understand the influence of reactor control methods on the strength and the design acceptance criteria. The main principles of the evaluation of mechanical characteristics of VVER-1000 fuel rods using the START-3 code are presented. The results of the prediction of the mechanical characteristics of the VVER-1000 fuel rods during the 4-year cycle in stationary mode under normal operating conditions and under their violation are illustrated. The maximum values of stress in the fuel rod in the stationary mode of operation are in the range of 60–80 MPa, which cannot cause depressurization of the fuel rod.</p>\",\"PeriodicalId\":18230,\"journal\":{\"name\":\"Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11003-024-00814-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11003-024-00814-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Calculation of Fuel Rod Strength Under Steady-State Operating Condition
The results of thermal calculations of the part of the fuel assembly of the active zone of the VVER-1000 reactor in the stationary mode of operation make it possible to evaluate the mechanical state of the fuel rod cladding, to understand the influence of reactor control methods on the strength and the design acceptance criteria. The main principles of the evaluation of mechanical characteristics of VVER-1000 fuel rods using the START-3 code are presented. The results of the prediction of the mechanical characteristics of the VVER-1000 fuel rods during the 4-year cycle in stationary mode under normal operating conditions and under their violation are illustrated. The maximum values of stress in the fuel rod in the stationary mode of operation are in the range of 60–80 MPa, which cannot cause depressurization of the fuel rod.
期刊介绍:
Materials Science reports on current research into such problems as cracking, fatigue and fracture, especially in active environments as well as corrosion and anticorrosion protection of structural metallic and polymer materials, and the development of new materials.