图形动态模型上的系统无穷小过度分散

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Statistics and Computing Pub Date : 2024-07-02 DOI:10.1007/s11222-024-10443-3
Ning Ning, Edward Ionides
{"title":"图形动态模型上的系统无穷小过度分散","authors":"Ning Ning, Edward Ionides","doi":"10.1007/s11222-024-10443-3","DOIUrl":null,"url":null,"abstract":"<p>Stochastic models for collections of interacting populations have crucial roles in many scientific fields such as epidemiology, ecology, performance engineering, and queueing theory, to name a few. However, the standard approach to extending an ordinary differential equation model to a Markov chain does not have sufficient flexibility in the mean-variance relationship to match data. To handle that, we develop new approaches using Dirichlet noise to construct collections of independent or dependent noise processes. This permits the modeling of high-frequency variation in transition rates both within and between the populations under study. Our theory is developed in a general framework of time-inhomogeneous Markov processes equipped with a general graphical structure. We demonstrate our approach on a widely analyzed measles dataset, adding Dirichlet noise to a classical Susceptible–Exposed–Infected–Recovered model. Our methodology shows improved statistical fit measured by log-likelihood and provides new insights into the dynamics of this biological system.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systemic infinitesimal over-dispersion on graphical dynamic models\",\"authors\":\"Ning Ning, Edward Ionides\",\"doi\":\"10.1007/s11222-024-10443-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stochastic models for collections of interacting populations have crucial roles in many scientific fields such as epidemiology, ecology, performance engineering, and queueing theory, to name a few. However, the standard approach to extending an ordinary differential equation model to a Markov chain does not have sufficient flexibility in the mean-variance relationship to match data. To handle that, we develop new approaches using Dirichlet noise to construct collections of independent or dependent noise processes. This permits the modeling of high-frequency variation in transition rates both within and between the populations under study. Our theory is developed in a general framework of time-inhomogeneous Markov processes equipped with a general graphical structure. We demonstrate our approach on a widely analyzed measles dataset, adding Dirichlet noise to a classical Susceptible–Exposed–Infected–Recovered model. Our methodology shows improved statistical fit measured by log-likelihood and provides new insights into the dynamics of this biological system.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10443-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10443-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在许多科学领域,如流行病学、生态学、性能工程和排队理论等,相互作用种群集合的随机模型发挥着至关重要的作用。然而,将常微分方程模型扩展为马尔可夫链的标准方法在均值-方差关系上没有足够的灵活性来匹配数据。为此,我们开发了使用 Dirichlet 噪声的新方法,以构建独立或从属噪声过程的集合。这样就可以对所研究种群内部和种群之间过渡率的高频变化进行建模。我们的理论是在具有一般图形结构的时间同构马尔可夫过程的一般框架中发展起来的。我们在一个广泛分析的麻疹数据集上演示了我们的方法,在经典的 "易感-暴露-感染-恢复 "模型中加入了 Dirichlet 噪声。我们的方法改进了以对数似然测量的统计拟合度,并为这一生物系统的动力学提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systemic infinitesimal over-dispersion on graphical dynamic models

Stochastic models for collections of interacting populations have crucial roles in many scientific fields such as epidemiology, ecology, performance engineering, and queueing theory, to name a few. However, the standard approach to extending an ordinary differential equation model to a Markov chain does not have sufficient flexibility in the mean-variance relationship to match data. To handle that, we develop new approaches using Dirichlet noise to construct collections of independent or dependent noise processes. This permits the modeling of high-frequency variation in transition rates both within and between the populations under study. Our theory is developed in a general framework of time-inhomogeneous Markov processes equipped with a general graphical structure. We demonstrate our approach on a widely analyzed measles dataset, adding Dirichlet noise to a classical Susceptible–Exposed–Infected–Recovered model. Our methodology shows improved statistical fit measured by log-likelihood and provides new insights into the dynamics of this biological system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
期刊最新文献
Accelerated failure time models with error-prone response and nonlinear covariates Sequential model identification with reversible jump ensemble data assimilation method Hidden Markov models for multivariate panel data Shrinkage for extreme partial least-squares Nonconvex Dantzig selector and its parallel computing algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1