n$维曼哈顿距离的渐近行为:在实证实验中估计多维场景

Ergon Cugler de Moraes Silva
{"title":"n$维曼哈顿距离的渐近行为:在实证实验中估计多维场景","authors":"Ergon Cugler de Moraes Silva","doi":"arxiv-2406.15441","DOIUrl":null,"url":null,"abstract":"Understanding distance metrics in high-dimensional spaces is crucial for\nvarious fields such as data analysis, machine learning, and optimization. The\nManhattan distance, a fundamental metric in multi-dimensional settings,\nmeasures the distance between two points by summing the absolute differences\nalong each dimension. This study investigates the behavior of Manhattan\ndistance as the dimensionality of the space increases, addressing the question:\nhow does the Manhattan distance between two points change as the number of\ndimensions n increases?. We analyze the theoretical properties and statistical\nbehavior of Manhattan distance through mathematical derivations and\ncomputational simulations using Python. By examining random points uniformly\ndistributed in fixed intervals across dimensions, we explore the asymptotic\nbehavior of Manhattan distance and validate theoretical expectations\nempirically. Our findings reveal that the mean and variance of Manhattan\ndistance exhibit predictable trends as dimensionality increases, aligning\nclosely with theoretical predictions. Visualizations of Manhattan distance\ndistributions across varying dimensionalities offer intuitive insights into its\nbehavior. This study contributes to the understanding of distance metrics in\nhigh-dimensional spaces, providing insights for applications requiring\nefficient navigation and analysis in multi-dimensional domains.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of the Manhattan distance in $n$-dimensions: Estimating multidimensional scenarios in empirical experiments\",\"authors\":\"Ergon Cugler de Moraes Silva\",\"doi\":\"arxiv-2406.15441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding distance metrics in high-dimensional spaces is crucial for\\nvarious fields such as data analysis, machine learning, and optimization. The\\nManhattan distance, a fundamental metric in multi-dimensional settings,\\nmeasures the distance between two points by summing the absolute differences\\nalong each dimension. This study investigates the behavior of Manhattan\\ndistance as the dimensionality of the space increases, addressing the question:\\nhow does the Manhattan distance between two points change as the number of\\ndimensions n increases?. We analyze the theoretical properties and statistical\\nbehavior of Manhattan distance through mathematical derivations and\\ncomputational simulations using Python. By examining random points uniformly\\ndistributed in fixed intervals across dimensions, we explore the asymptotic\\nbehavior of Manhattan distance and validate theoretical expectations\\nempirically. Our findings reveal that the mean and variance of Manhattan\\ndistance exhibit predictable trends as dimensionality increases, aligning\\nclosely with theoretical predictions. Visualizations of Manhattan distance\\ndistributions across varying dimensionalities offer intuitive insights into its\\nbehavior. This study contributes to the understanding of distance metrics in\\nhigh-dimensional spaces, providing insights for applications requiring\\nefficient navigation and analysis in multi-dimensional domains.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.15441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解高维空间中的距离度量对于数据分析、机器学习和优化等多个领域至关重要。曼哈顿距离是多维环境中的一个基本度量,它通过对每个维度上的绝对差值求和来测量两点之间的距离。本研究探讨了曼哈顿距离在空间维度增加时的行为,解决了 "当维度数 n 增加时,两点间的曼哈顿距离会如何变化 "这一问题。我们通过数学推导和使用 Python 进行计算模拟,分析了曼哈顿距离的理论性质和统计行为。通过研究均匀分布在各维度固定区间的随机点,我们探索了曼哈顿距离的渐近行为,并从经验上验证了理论预期。我们的研究结果表明,随着维度的增加,曼哈顿距离的均值和方差呈现出可预测的趋势,这与理论预测非常吻合。不同维度下曼哈顿距离分布的可视化提供了对其行为的直观见解。这项研究有助于理解高维空间中的距离度量,为需要在多维领域中进行高效导航和分析的应用提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotic behavior of the Manhattan distance in $n$-dimensions: Estimating multidimensional scenarios in empirical experiments
Understanding distance metrics in high-dimensional spaces is crucial for various fields such as data analysis, machine learning, and optimization. The Manhattan distance, a fundamental metric in multi-dimensional settings, measures the distance between two points by summing the absolute differences along each dimension. This study investigates the behavior of Manhattan distance as the dimensionality of the space increases, addressing the question: how does the Manhattan distance between two points change as the number of dimensions n increases?. We analyze the theoretical properties and statistical behavior of Manhattan distance through mathematical derivations and computational simulations using Python. By examining random points uniformly distributed in fixed intervals across dimensions, we explore the asymptotic behavior of Manhattan distance and validate theoretical expectations empirically. Our findings reveal that the mean and variance of Manhattan distance exhibit predictable trends as dimensionality increases, aligning closely with theoretical predictions. Visualizations of Manhattan distance distributions across varying dimensionalities offer intuitive insights into its behavior. This study contributes to the understanding of distance metrics in high-dimensional spaces, providing insights for applications requiring efficient navigation and analysis in multi-dimensional domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Several formulae for summation over $SL(2,\mathbb Z)$ On Certain Diophantine Equations Involving Lucas Numbers Functional equation for Mellin transform of Fourier series associated with modular forms On Finite Mellin Transform via Ramanujan's Master Theorem On infinite versions of the prisoner problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1