Xiao Zheng, Muhammad Tahir, Khursheed Aurangzeb, Muhammad Shahid Anwar, Muhammad Aamir, Ahmad Farzan, Rizwan Ullah
{"title":"基于非正交多址的 MEC,用于电子商务系统中的高能效任务卸载","authors":"Xiao Zheng, Muhammad Tahir, Khursheed Aurangzeb, Muhammad Shahid Anwar, Muhammad Aamir, Ahmad Farzan, Rizwan Ullah","doi":"10.1186/s13677-024-00680-2","DOIUrl":null,"url":null,"abstract":"Mobile edge computing (MEC) reduces the latency for end users to access applications deployed at the edge by offloading tasks to the edge. With the popularity of e-commerce and the expansion of business scale, server load continues to increase, and energy efficiency issues gradually become more prominent. Computation offloading has received widespread attention as a technology that effectively reduces server load. However, how to improve energy efficiency while ensuring computing requirements is an important challenge facing computation offloading. To solve this problem, using non-orthogonal multiple access (NOMA) to increase the efficiency of multi-access wireless transmission, MEC supporting NOMA is investigated in the research. Computing resources will be divided into separate sub-computing that will be handled via e-commerce terminals or transferred to edge sides by reutilizing radio resources, we put forward a Group Switching Matching Algorithm Based on Resource Unit Allocation (GSM-RUA) algorithm that is multi-dimensional. To this end, we first formulate this task allocation problem as a long-term stochastic optimization problem, which we then convert to three short-term deterministic sub-programming problems using Lyapunov optimization, namely, radio resource allocation in a large timescale, computation resource allocating and splitting in a small-time frame. Of the 3 short-term deterministic sub-programming problems, the first sub-programming problem can be remodeled into a 1 to n matching problem, which can be solved using the block-shift-matching-based radio resource allocation method. The latter two sub-programming problems are then transformed into two continuous convex problems by relaxation and then solved easily. We then use simulations to prove that our GSM-RUA algorithm is superior to the state-of-the-art resource management algorithms in terms of energy consumption, efficiency and complexity for e-commerce scenarios.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-orthogonal multiple access-based MEC for energy-efficient task offloading in e-commerce systems\",\"authors\":\"Xiao Zheng, Muhammad Tahir, Khursheed Aurangzeb, Muhammad Shahid Anwar, Muhammad Aamir, Ahmad Farzan, Rizwan Ullah\",\"doi\":\"10.1186/s13677-024-00680-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile edge computing (MEC) reduces the latency for end users to access applications deployed at the edge by offloading tasks to the edge. With the popularity of e-commerce and the expansion of business scale, server load continues to increase, and energy efficiency issues gradually become more prominent. Computation offloading has received widespread attention as a technology that effectively reduces server load. However, how to improve energy efficiency while ensuring computing requirements is an important challenge facing computation offloading. To solve this problem, using non-orthogonal multiple access (NOMA) to increase the efficiency of multi-access wireless transmission, MEC supporting NOMA is investigated in the research. Computing resources will be divided into separate sub-computing that will be handled via e-commerce terminals or transferred to edge sides by reutilizing radio resources, we put forward a Group Switching Matching Algorithm Based on Resource Unit Allocation (GSM-RUA) algorithm that is multi-dimensional. To this end, we first formulate this task allocation problem as a long-term stochastic optimization problem, which we then convert to three short-term deterministic sub-programming problems using Lyapunov optimization, namely, radio resource allocation in a large timescale, computation resource allocating and splitting in a small-time frame. Of the 3 short-term deterministic sub-programming problems, the first sub-programming problem can be remodeled into a 1 to n matching problem, which can be solved using the block-shift-matching-based radio resource allocation method. The latter two sub-programming problems are then transformed into two continuous convex problems by relaxation and then solved easily. We then use simulations to prove that our GSM-RUA algorithm is superior to the state-of-the-art resource management algorithms in terms of energy consumption, efficiency and complexity for e-commerce scenarios.\",\"PeriodicalId\":501257,\"journal\":{\"name\":\"Journal of Cloud Computing\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13677-024-00680-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00680-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-orthogonal multiple access-based MEC for energy-efficient task offloading in e-commerce systems
Mobile edge computing (MEC) reduces the latency for end users to access applications deployed at the edge by offloading tasks to the edge. With the popularity of e-commerce and the expansion of business scale, server load continues to increase, and energy efficiency issues gradually become more prominent. Computation offloading has received widespread attention as a technology that effectively reduces server load. However, how to improve energy efficiency while ensuring computing requirements is an important challenge facing computation offloading. To solve this problem, using non-orthogonal multiple access (NOMA) to increase the efficiency of multi-access wireless transmission, MEC supporting NOMA is investigated in the research. Computing resources will be divided into separate sub-computing that will be handled via e-commerce terminals or transferred to edge sides by reutilizing radio resources, we put forward a Group Switching Matching Algorithm Based on Resource Unit Allocation (GSM-RUA) algorithm that is multi-dimensional. To this end, we first formulate this task allocation problem as a long-term stochastic optimization problem, which we then convert to three short-term deterministic sub-programming problems using Lyapunov optimization, namely, radio resource allocation in a large timescale, computation resource allocating and splitting in a small-time frame. Of the 3 short-term deterministic sub-programming problems, the first sub-programming problem can be remodeled into a 1 to n matching problem, which can be solved using the block-shift-matching-based radio resource allocation method. The latter two sub-programming problems are then transformed into two continuous convex problems by relaxation and then solved easily. We then use simulations to prove that our GSM-RUA algorithm is superior to the state-of-the-art resource management algorithms in terms of energy consumption, efficiency and complexity for e-commerce scenarios.