反常随机神经网络:一种特殊的更新过程

Hong Zhang, Guohua Li
{"title":"反常随机神经网络:一种特殊的更新过程","authors":"Hong Zhang, Guohua Li","doi":"arxiv-2406.18877","DOIUrl":null,"url":null,"abstract":"In this paper we propose an open anomalous semi-Markovian random neural\nnetworks model with negative and positive signals with arbitrary random waiting\ntimes. We investigate the signal flow process in the anomalous random neural\nnetworks based on renewal process, and obtain the corresponding master equation\nfor time evolution of the probability of the potential of the neurons. As\nexamples, we discuss the special cases of exponential waiting times and power\nlaw ones, and find the fractional memory effect of the probability of the\nsystem state on its history evolution. Besides, the closed random neural\nnetworks model is introduced and the corresponding rate equation is given.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous Random Neural Networks: a Special Renewal Process\",\"authors\":\"Hong Zhang, Guohua Li\",\"doi\":\"arxiv-2406.18877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an open anomalous semi-Markovian random neural\\nnetworks model with negative and positive signals with arbitrary random waiting\\ntimes. We investigate the signal flow process in the anomalous random neural\\nnetworks based on renewal process, and obtain the corresponding master equation\\nfor time evolution of the probability of the potential of the neurons. As\\nexamples, we discuss the special cases of exponential waiting times and power\\nlaw ones, and find the fractional memory effect of the probability of the\\nsystem state on its history evolution. Besides, the closed random neural\\nnetworks model is introduced and the corresponding rate equation is given.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.18877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种开放的反常半马尔可夫随机神经网络模型,该模型具有任意随机等待时间的负信号和正信号。我们基于更新过程研究了反常随机神经网络中的信号流过程,并得到了相应的神经元电位概率时间演化主方程。作为例子,我们讨论了指数等待时间和幂律等待时间的特殊情况,并发现了系统状态概率对其历史演化的分数记忆效应。此外,我们还引入了封闭随机神经网络模型,并给出了相应的速率方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomalous Random Neural Networks: a Special Renewal Process
In this paper we propose an open anomalous semi-Markovian random neural networks model with negative and positive signals with arbitrary random waiting times. We investigate the signal flow process in the anomalous random neural networks based on renewal process, and obtain the corresponding master equation for time evolution of the probability of the potential of the neurons. As examples, we discuss the special cases of exponential waiting times and power law ones, and find the fractional memory effect of the probability of the system state on its history evolution. Besides, the closed random neural networks model is introduced and the corresponding rate equation is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1