由水母启发的聚脲离子凝胶,具有机械坚固性、自愈合性和超支化团簇聚合的荧光性。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-07-05 DOI:10.1002/anie.202410335
Zhipeng Zhang, Lu Qian, Bin Zhang, Prof. Chunfeng Ma, Prof. Guangzhao Zhang
{"title":"由水母启发的聚脲离子凝胶,具有机械坚固性、自愈合性和超支化团簇聚合的荧光性。","authors":"Zhipeng Zhang,&nbsp;Lu Qian,&nbsp;Bin Zhang,&nbsp;Prof. Chunfeng Ma,&nbsp;Prof. Guangzhao Zhang","doi":"10.1002/anie.202410335","DOIUrl":null,"url":null,"abstract":"<p>Ionogels are promising for soft iontronics, with their network structure playing a pivotal role in determining their performance and potential applications. However, simultaneously achieving mechanical toughness, low hysteresis, self-healing, and fluorescence using existing network structures is challenging. Drawing inspiration from jellyfish, we propose a novel hierarchical crosslinking network structure design for in situ formation of hyperbranched cluster aggregates (HCA) to fabricate polyurea ionogels to overcome these challenges. Leveraging the disparate reactivity of isocyanate groups, we induce the in situ formation of HCA through competing reactions, enhancing toughness and imparting the clustering-triggered emission of ionogel. This synergy between supramolecular interactions in the network and plasticizing effect in ionic liquid leads to reduced hysteresis of the ionogel. Furthermore, the incorporation of NCO-terminated prepolymer with dynamic oxime–urethane bonds (NPU) enables self-healing and enhances stretchability. Our investigations highlight the significant influence of HCA on ionogel performance, showcasing mechanical robustness including high strength (3.5 MPa), exceptional toughness (5.5 MJ m<sup>−3</sup>), resistance to puncture, and low hysteresis, self-healing, as well as fluorescence, surpassing conventional dynamic crosslinking approaches. This network design strategy is versatile and can meet the various demands of flexible electronics applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jellyfish-Inspired Polyurea Ionogel with Mechanical Robustness, Self-Healing, and Fluorescence Enabled by Hyperbranched Cluster Aggregates\",\"authors\":\"Zhipeng Zhang,&nbsp;Lu Qian,&nbsp;Bin Zhang,&nbsp;Prof. Chunfeng Ma,&nbsp;Prof. Guangzhao Zhang\",\"doi\":\"10.1002/anie.202410335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ionogels are promising for soft iontronics, with their network structure playing a pivotal role in determining their performance and potential applications. However, simultaneously achieving mechanical toughness, low hysteresis, self-healing, and fluorescence using existing network structures is challenging. Drawing inspiration from jellyfish, we propose a novel hierarchical crosslinking network structure design for in situ formation of hyperbranched cluster aggregates (HCA) to fabricate polyurea ionogels to overcome these challenges. Leveraging the disparate reactivity of isocyanate groups, we induce the in situ formation of HCA through competing reactions, enhancing toughness and imparting the clustering-triggered emission of ionogel. This synergy between supramolecular interactions in the network and plasticizing effect in ionic liquid leads to reduced hysteresis of the ionogel. Furthermore, the incorporation of NCO-terminated prepolymer with dynamic oxime–urethane bonds (NPU) enables self-healing and enhances stretchability. Our investigations highlight the significant influence of HCA on ionogel performance, showcasing mechanical robustness including high strength (3.5 MPa), exceptional toughness (5.5 MJ m<sup>−3</sup>), resistance to puncture, and low hysteresis, self-healing, as well as fluorescence, surpassing conventional dynamic crosslinking approaches. This network design strategy is versatile and can meet the various demands of flexible electronics applications.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202410335\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202410335","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

离子凝胶在软离子电子学方面大有可为,其网络结构在决定其性能和潜在应用方面起着关键作用。然而,利用现有的网络结构同时实现机械韧性、低滞后性、自愈性和荧光性是一项挑战。我们从水母中汲取灵感,提出了一种新颖的分层交联网络结构设计,用于原位形成超支化团簇聚集体(HCA)来制造聚脲离子凝胶,以克服这些挑战。利用异氰酸酯基团的不同反应活性,我们通过竞争反应诱导 HCA 的原位形成,从而增强了韧性,并赋予离子凝胶以簇触发发射的特性。网络中的超分子相互作用与离子液体中的塑化效应之间的协同作用降低了离子凝胶的滞后性。此外,加入具有动态肟-聚氨酯键(NPU)的 NCO 端预聚物可实现自修复并增强拉伸性。我们的研究凸显了 HCA 对离子凝胶性能的重要影响,显示出了超越传统动态交联方法的机械坚固性,包括高强度(3.5 兆帕)、超强韧性(5.5 兆焦耳/立方米)、抗穿刺性、低滞后性、自愈合性和荧光性。这种网络设计策略用途广泛,可满足柔性电子应用的各种需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Jellyfish-Inspired Polyurea Ionogel with Mechanical Robustness, Self-Healing, and Fluorescence Enabled by Hyperbranched Cluster Aggregates

Ionogels are promising for soft iontronics, with their network structure playing a pivotal role in determining their performance and potential applications. However, simultaneously achieving mechanical toughness, low hysteresis, self-healing, and fluorescence using existing network structures is challenging. Drawing inspiration from jellyfish, we propose a novel hierarchical crosslinking network structure design for in situ formation of hyperbranched cluster aggregates (HCA) to fabricate polyurea ionogels to overcome these challenges. Leveraging the disparate reactivity of isocyanate groups, we induce the in situ formation of HCA through competing reactions, enhancing toughness and imparting the clustering-triggered emission of ionogel. This synergy between supramolecular interactions in the network and plasticizing effect in ionic liquid leads to reduced hysteresis of the ionogel. Furthermore, the incorporation of NCO-terminated prepolymer with dynamic oxime–urethane bonds (NPU) enables self-healing and enhances stretchability. Our investigations highlight the significant influence of HCA on ionogel performance, showcasing mechanical robustness including high strength (3.5 MPa), exceptional toughness (5.5 MJ m−3), resistance to puncture, and low hysteresis, self-healing, as well as fluorescence, surpassing conventional dynamic crosslinking approaches. This network design strategy is versatile and can meet the various demands of flexible electronics applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Correspondence on "A Mitochondrion-Localized Two-Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors". Dearomative Construction of 2D/3D Frameworks from Quinolines via Nucleophilic Addition/Borate-Mediated Photocycloaddition. Manipulating Atomic-Coupling in Dual-Cavity Boride Nanoreactor to Achieve Hierarchical Catalytic Engineering for Sulfur Cathode. Withdrawal: Steering Sulfur Reduction Pathways via Cisplatin Enables High Performance in Lithium-Sulfur Batteries. Regulating Zn2+ Migration-Diffusion Behavior by Spontaneous Cascade Optimization Strategy for Long-Life and Low N/P Ratio Zinc Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1