Alexander Janssen, Frank C Bennis, Marjon H Cnossen, Ron A A Mathôt
{"title":"深隔室模型中的混合效应估计:变量方法优于一阶近似方法","authors":"Alexander Janssen, Frank C Bennis, Marjon H Cnossen, Ron A A Mathôt","doi":"10.1007/s10928-024-09931-w","DOIUrl":null,"url":null,"abstract":"<p><p>This work focusses on extending the deep compartment model (DCM) framework to the estimation of mixed-effects. By introducing random effects, model predictions can be personalized based on drug measurements, enabling the testing of different treatment schedules on an individual basis. The performance of classical first-order (FO and FOCE) and machine learning based variational inference (VI) algorithms were compared in a simulation study. In VI, posterior distributions of the random variables are approximated using variational distributions whose parameters can be directly optimized. We found that variational approximations estimated using the path derivative gradient estimator version of VI were highly accurate. Models fit on the simulated data set using the FO and VI objective functions gave similar results, with accurate predictions of both the population parameters and covariate effects. Contrastingly, models fit using FOCE depicted erratic behaviour during optimization, and resulting parameter estimates were inaccurate. Finally, we compared the performance of the methods on two real-world data sets of haemophilia A patients who received standard half-life factor VIII concentrates during prophylactic and perioperative settings. Again, models fit using FO and VI depicted similar results, although some models fit using FO presented divergent results. Again, models fit using FOCE were unstable. In conclusion, we show that mixed-effects estimation using the DCM is feasible. VI performs conditional estimation, which might lead to more accurate results in more complex models compared to the FO method.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"797-808"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579087/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mixed effect estimation in deep compartment models: Variational methods outperform first-order approximations.\",\"authors\":\"Alexander Janssen, Frank C Bennis, Marjon H Cnossen, Ron A A Mathôt\",\"doi\":\"10.1007/s10928-024-09931-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work focusses on extending the deep compartment model (DCM) framework to the estimation of mixed-effects. By introducing random effects, model predictions can be personalized based on drug measurements, enabling the testing of different treatment schedules on an individual basis. The performance of classical first-order (FO and FOCE) and machine learning based variational inference (VI) algorithms were compared in a simulation study. In VI, posterior distributions of the random variables are approximated using variational distributions whose parameters can be directly optimized. We found that variational approximations estimated using the path derivative gradient estimator version of VI were highly accurate. Models fit on the simulated data set using the FO and VI objective functions gave similar results, with accurate predictions of both the population parameters and covariate effects. Contrastingly, models fit using FOCE depicted erratic behaviour during optimization, and resulting parameter estimates were inaccurate. Finally, we compared the performance of the methods on two real-world data sets of haemophilia A patients who received standard half-life factor VIII concentrates during prophylactic and perioperative settings. Again, models fit using FO and VI depicted similar results, although some models fit using FO presented divergent results. Again, models fit using FOCE were unstable. In conclusion, we show that mixed-effects estimation using the DCM is feasible. VI performs conditional estimation, which might lead to more accurate results in more complex models compared to the FO method.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\" \",\"pages\":\"797-808\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579087/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-024-09931-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09931-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
这项工作的重点是将深隔室模型(DCM)框架扩展到混合效应的估算。通过引入随机效应,可以根据药物测量结果对模型预测进行个性化处理,从而对不同的治疗方案进行个体化测试。在一项模拟研究中,比较了经典的一阶算法(FO 和 FOCE)和基于机器学习的变异推理算法(VI)的性能。在变异推理中,随机变量的后验分布通过变异分布来近似,其参数可以直接优化。我们发现,使用路径导数梯度估计器版本的 VI 估算的变分近似值非常准确。在模拟数据集上使用 FO 和 VI 目标函数拟合的模型结果相似,都能准确预测群体参数和协变效应。相反,使用 FOCE 拟合的模型在优化过程中表现不稳定,得出的参数估计也不准确。最后,我们比较了这两种方法在两个真实世界数据集上的表现,这两个数据集是在预防和围手术期接受标准半衰期第八因子浓缩液治疗的 A 型血友病患者。同样,使用 FO 和 VI 拟合的模型显示了相似的结果,但使用 FO 拟合的一些模型显示了不同的结果。同样,使用 FOCE 拟合的模型也不稳定。总之,我们表明使用 DCM 进行混合效应估计是可行的。与 FO 方法相比,VI 可以进行条件估计,这可能会在更复杂的模型中得到更准确的结果。
Mixed effect estimation in deep compartment models: Variational methods outperform first-order approximations.
This work focusses on extending the deep compartment model (DCM) framework to the estimation of mixed-effects. By introducing random effects, model predictions can be personalized based on drug measurements, enabling the testing of different treatment schedules on an individual basis. The performance of classical first-order (FO and FOCE) and machine learning based variational inference (VI) algorithms were compared in a simulation study. In VI, posterior distributions of the random variables are approximated using variational distributions whose parameters can be directly optimized. We found that variational approximations estimated using the path derivative gradient estimator version of VI were highly accurate. Models fit on the simulated data set using the FO and VI objective functions gave similar results, with accurate predictions of both the population parameters and covariate effects. Contrastingly, models fit using FOCE depicted erratic behaviour during optimization, and resulting parameter estimates were inaccurate. Finally, we compared the performance of the methods on two real-world data sets of haemophilia A patients who received standard half-life factor VIII concentrates during prophylactic and perioperative settings. Again, models fit using FO and VI depicted similar results, although some models fit using FO presented divergent results. Again, models fit using FOCE were unstable. In conclusion, we show that mixed-effects estimation using the DCM is feasible. VI performs conditional estimation, which might lead to more accurate results in more complex models compared to the FO method.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.