在钴(III)多吡啶络合物的激发态动力学中确定马库斯-反区域行为的起源。

IF 19.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nature chemistry Pub Date : 2024-07-04 DOI:10.1038/s41557-024-01564-3
Atanu Ghosh, Jonathan T Yarranton, James K McCusker
{"title":"在钴(III)多吡啶络合物的激发态动力学中确定马库斯-反区域行为的起源。","authors":"Atanu Ghosh, Jonathan T Yarranton, James K McCusker","doi":"10.1038/s41557-024-01564-3","DOIUrl":null,"url":null,"abstract":"<p><p>Growing interest in the use of first-row transition metal complexes in a number of applied contexts-including but not limited to photoredox catalysis and solar energy conversion-underscores the need for a detailed understanding of their photophysical properties. A recent focus on ligand-field photocatalysis using cobalt(III) polypyridyls in particular has unlocked unprecedented excited-state reactivities. Photophysical studies on Co(III) chromophores in general are relatively uncommon, and so here we carry out a systematic study of a series of Co(III) polypyridyl complexes in order to delineate their excited-state dynamics. Compounds with varying ligand-field strengths were prepared and studied using variable-temperature ultrafast transient absorption spectroscopy. Analysis of the data establishes that the ground-state recovery dynamics are operating in the Marcus inverted region, in stark contrast to what is typically observed in other first-row metal complexes. The analysis has further revealed the underlying reasons driving this excited-state behaviour, thereby enabling potential advancements in the targeted use of the Marcus inverted region for a variety of photolytic applications.</p>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":null,"pages":null},"PeriodicalIF":19.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing the origin of Marcus-inverted-region behaviour in the excited-state dynamics of cobalt(III) polypyridyl complexes.\",\"authors\":\"Atanu Ghosh, Jonathan T Yarranton, James K McCusker\",\"doi\":\"10.1038/s41557-024-01564-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growing interest in the use of first-row transition metal complexes in a number of applied contexts-including but not limited to photoredox catalysis and solar energy conversion-underscores the need for a detailed understanding of their photophysical properties. A recent focus on ligand-field photocatalysis using cobalt(III) polypyridyls in particular has unlocked unprecedented excited-state reactivities. Photophysical studies on Co(III) chromophores in general are relatively uncommon, and so here we carry out a systematic study of a series of Co(III) polypyridyl complexes in order to delineate their excited-state dynamics. Compounds with varying ligand-field strengths were prepared and studied using variable-temperature ultrafast transient absorption spectroscopy. Analysis of the data establishes that the ground-state recovery dynamics are operating in the Marcus inverted region, in stark contrast to what is typically observed in other first-row metal complexes. The analysis has further revealed the underlying reasons driving this excited-state behaviour, thereby enabling potential advancements in the targeted use of the Marcus inverted region for a variety of photolytic applications.</p>\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41557-024-01564-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01564-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人们对第一排过渡金属复合物在许多应用领域(包括但不限于光氧化催化和太阳能转换)的使用越来越感兴趣,这表明需要详细了解它们的光物理特性。最近,人们特别关注使用多吡啶钴(III)的配体场光催化技术,从而开启了前所未有的激发态反应活性。一般来说,对钴(III)发色团的光物理研究并不多见,因此我们在此对一系列钴(III)多吡啶配合物进行了系统研究,以了解它们的激发态动力学。我们制备了不同配体场强的化合物,并使用变温超快瞬态吸收光谱进行了研究。对数据的分析表明,基态恢复动力学是在马库斯倒置区域进行的,这与在其他第一排金属复合物中通常观察到的情况形成了鲜明对比。分析进一步揭示了驱动这种激发态行为的根本原因,从而为有针对性地将马库斯倒置区用于各种光解应用带来了潜在的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishing the origin of Marcus-inverted-region behaviour in the excited-state dynamics of cobalt(III) polypyridyl complexes.

Growing interest in the use of first-row transition metal complexes in a number of applied contexts-including but not limited to photoredox catalysis and solar energy conversion-underscores the need for a detailed understanding of their photophysical properties. A recent focus on ligand-field photocatalysis using cobalt(III) polypyridyls in particular has unlocked unprecedented excited-state reactivities. Photophysical studies on Co(III) chromophores in general are relatively uncommon, and so here we carry out a systematic study of a series of Co(III) polypyridyl complexes in order to delineate their excited-state dynamics. Compounds with varying ligand-field strengths were prepared and studied using variable-temperature ultrafast transient absorption spectroscopy. Analysis of the data establishes that the ground-state recovery dynamics are operating in the Marcus inverted region, in stark contrast to what is typically observed in other first-row metal complexes. The analysis has further revealed the underlying reasons driving this excited-state behaviour, thereby enabling potential advancements in the targeted use of the Marcus inverted region for a variety of photolytic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
期刊最新文献
Fused radical SAM and αKG-HExxH domain proteins contain a distinct structural fold and catalyse cyclophane formation and β-hydroxylation A single diiron enzyme catalyses the oxidative rearrangement of tryptophan to indole nitrile Small-molecule properties define partitioning into biomolecular condensates Stereoselective and site-divergent synthesis of C-glycosides Isolation of a NHC-stabilized heavier nitrile and its conversion into an isonitrile analogue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1