LazyAF,一个可用于蛋白质-蛋白质相互作用中型硅学预测的管道。

IF 2.6 4区 生物学 Q3 MICROBIOLOGY Microbiology-Sgm Pub Date : 2024-07-01 DOI:10.1099/mic.0.001473
Thomas C McLean
{"title":"LazyAF,一个可用于蛋白质-蛋白质相互作用中型硅学预测的管道。","authors":"Thomas C McLean","doi":"10.1099/mic.0.001473","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence has revolutionized the field of protein structure prediction. However, with more powerful and complex software being developed, it is accessibility and ease of use rather than capability that is quickly becoming a limiting factor to end users. LazyAF is a Google Colaboratory-based pipeline which integrates the existing ColabFold BATCH software to streamline the process of medium-scale protein-protein interaction prediction. LazyAF was used to predict the interactome of the 76 proteins encoded on the broad-host-range multi-drug resistance plasmid RK2, demonstrating the ease and accessibility the pipeline provides.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316561/pdf/","citationCount":"0","resultStr":"{\"title\":\"LazyAF, a pipeline for accessible medium-scale <i>in silico</i> prediction of protein-protein interactions.\",\"authors\":\"Thomas C McLean\",\"doi\":\"10.1099/mic.0.001473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence has revolutionized the field of protein structure prediction. However, with more powerful and complex software being developed, it is accessibility and ease of use rather than capability that is quickly becoming a limiting factor to end users. LazyAF is a Google Colaboratory-based pipeline which integrates the existing ColabFold BATCH software to streamline the process of medium-scale protein-protein interaction prediction. LazyAF was used to predict the interactome of the 76 proteins encoded on the broad-host-range multi-drug resistance plasmid RK2, demonstrating the ease and accessibility the pipeline provides.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"170 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316561/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001473\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001473","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能已经彻底改变了蛋白质结构预测领域。然而,随着功能更强大、更复杂的软件不断被开发出来,对终端用户来说,限制因素很快就变成了软件的可及性和易用性,而不是软件的功能。LazyAF是一个基于谷歌实验室的管道,它整合了现有的ColabFold BATCH软件,简化了中等规模的蛋白质-蛋白质相互作用预测过程。我们用 LazyAF 预测了广泛宿主多药抗性质粒 RK2 上编码的 76 种蛋白质的相互作用组,证明了该管道所提供的简易性和可访问性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LazyAF, a pipeline for accessible medium-scale in silico prediction of protein-protein interactions.

Artificial intelligence has revolutionized the field of protein structure prediction. However, with more powerful and complex software being developed, it is accessibility and ease of use rather than capability that is quickly becoming a limiting factor to end users. LazyAF is a Google Colaboratory-based pipeline which integrates the existing ColabFold BATCH software to streamline the process of medium-scale protein-protein interaction prediction. LazyAF was used to predict the interactome of the 76 proteins encoded on the broad-host-range multi-drug resistance plasmid RK2, demonstrating the ease and accessibility the pipeline provides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
期刊最新文献
Quantifying the fractal complexity of nutrient transport channels in Escherichia coli biofilms under varying cell shape and growth environment. Study of excess manganese stress response highlights the central role of manganese exporter Mnx for holding manganese homeostasis in the cyanobacterium Synechocystis sp. PCC 6803. Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica. The PrfA regulon of Listeria monocytogenes is induced by growth in low-oxygen microaerophilic conditions. Agarooligosaccharides as a novel concept in prebiotics: selective inhibition of Ruminococcus gnavus and Fusobacterium nucleatum while preserving Bifidobacteria, Lactobacillales in vitro, and inhibiting Lachnospiraceae in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1