David Silveira MS, Ashley Kendell PhD, Beth Shook PhD
{"title":"热电偶绝缘失效对火灾死亡法证场景中温度测量数据准确性的影响--第一部分:物理分解。","authors":"David Silveira MS, Ashley Kendell PhD, Beth Shook PhD","doi":"10.1111/1556-4029.15576","DOIUrl":null,"url":null,"abstract":"<p>Thermocouples are utilized to monitor a wide range of temperatures in industrial applications. They are also used in both fire and forensic science research to measure temperatures of fires and of materials exposed to fire. Taking accurate temperature measurements during forensic fire-death scenarios is very difficult due to direct fire exposure to thermocouples, shrinkage and destruction of tissues, and movements from pyre collapse and pugilistic posturing of human donors. This two-part study investigates the impacts on the accuracy of temperature data if the selected thermocouples are unable to withstand fire exposure. Part I (this article) provides an overview of thermocouple theory along with evidence of the physical deterioration that occurs when glass fiber-insulated thermocouple wires are overheated by exposure to fire-level temperatures in a muffle furnace. This study verified that insulation overheating causes embrittlement and disintegration, which can cause the indicated temperature to reflect a new location of measurement located far away from the original measuring junction at the thermocouple tip. Part II will discuss the measurement errors that occurred due to low electrical resistance of insulation when three different thermocouple models were passed through fire-level temperatures to measure an ice bath at a constant temperature of 0°C.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":"69 5","pages":"1899-1905"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impacts of thermocouple insulation failure on the accuracy of temperature measurement data in forensic fire-death scenarios—Part I: Physical disintegration\",\"authors\":\"David Silveira MS, Ashley Kendell PhD, Beth Shook PhD\",\"doi\":\"10.1111/1556-4029.15576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermocouples are utilized to monitor a wide range of temperatures in industrial applications. They are also used in both fire and forensic science research to measure temperatures of fires and of materials exposed to fire. Taking accurate temperature measurements during forensic fire-death scenarios is very difficult due to direct fire exposure to thermocouples, shrinkage and destruction of tissues, and movements from pyre collapse and pugilistic posturing of human donors. This two-part study investigates the impacts on the accuracy of temperature data if the selected thermocouples are unable to withstand fire exposure. Part I (this article) provides an overview of thermocouple theory along with evidence of the physical deterioration that occurs when glass fiber-insulated thermocouple wires are overheated by exposure to fire-level temperatures in a muffle furnace. This study verified that insulation overheating causes embrittlement and disintegration, which can cause the indicated temperature to reflect a new location of measurement located far away from the original measuring junction at the thermocouple tip. Part II will discuss the measurement errors that occurred due to low electrical resistance of insulation when three different thermocouple models were passed through fire-level temperatures to measure an ice bath at a constant temperature of 0°C.</p>\",\"PeriodicalId\":15743,\"journal\":{\"name\":\"Journal of forensic sciences\",\"volume\":\"69 5\",\"pages\":\"1899-1905\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of forensic sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15576\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15576","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
The impacts of thermocouple insulation failure on the accuracy of temperature measurement data in forensic fire-death scenarios—Part I: Physical disintegration
Thermocouples are utilized to monitor a wide range of temperatures in industrial applications. They are also used in both fire and forensic science research to measure temperatures of fires and of materials exposed to fire. Taking accurate temperature measurements during forensic fire-death scenarios is very difficult due to direct fire exposure to thermocouples, shrinkage and destruction of tissues, and movements from pyre collapse and pugilistic posturing of human donors. This two-part study investigates the impacts on the accuracy of temperature data if the selected thermocouples are unable to withstand fire exposure. Part I (this article) provides an overview of thermocouple theory along with evidence of the physical deterioration that occurs when glass fiber-insulated thermocouple wires are overheated by exposure to fire-level temperatures in a muffle furnace. This study verified that insulation overheating causes embrittlement and disintegration, which can cause the indicated temperature to reflect a new location of measurement located far away from the original measuring junction at the thermocouple tip. Part II will discuss the measurement errors that occurred due to low electrical resistance of insulation when three different thermocouple models were passed through fire-level temperatures to measure an ice bath at a constant temperature of 0°C.
期刊介绍:
The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.