利用开源机器学习方法评估分子复杂性以预测工艺质量强度

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-06-23 DOI:10.1021/acsomega.4c02427
Nicole Tin*, Mandeep Chauhan, Kennedy Agwamba, Yibai Sun, Astrid Parsons, Philippa Payne and Remus Osan*, 
{"title":"利用开源机器学习方法评估分子复杂性以预测工艺质量强度","authors":"Nicole Tin*,&nbsp;Mandeep Chauhan,&nbsp;Kennedy Agwamba,&nbsp;Yibai Sun,&nbsp;Astrid Parsons,&nbsp;Philippa Payne and Remus Osan*,&nbsp;","doi":"10.1021/acsomega.4c02427","DOIUrl":null,"url":null,"abstract":"<p >The application of green chemistry is critical for cultivating environmental responsibility and sustainable practices in pharmaceutical manufacturing. Process mass intensity (PMI) is a key metric that quantifies the resource efficiency of a manufacturing process, but determining what constitutes a successful PMI of a specific molecule is challenging. A recent approach correlated molecular features to a crowdsourced definition of molecular complexity to determine PMI targets. While recent machine learning tools show promise in predicting molecular complexity, a more extensive application could significantly optimize manufacturing processes. To this end, we refine and expand upon the SMART-PMI tool by Sheridan et al. to create an open-source model and application. Our solution emphasizes explainability and parsimony to facilitate a nuanced understanding of prediction and ensure informed decision-making. The resulting model uses four descriptors─the heteroatom count, stereocenter count, unique topological torsion, and connectivity index chi4n─to compute molecular complexity with a comparable 82.6% predictive accuracy and 0.349 RMSE. We develop a corresponding app that takes in structured data files (SDF) to rapidly quantify molecular complexity and provide a PMI target that can be used to drive process development activities. By integrating machine learning explainability and open-source accessibility, we provide flexible tools to advance the field of green chemistry and sustainable pharmaceutical manufacturing.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c02427","citationCount":"0","resultStr":"{\"title\":\"Evaluating Molecular Complexity with Open-Source Machine Learning Approaches to Predict Process Mass Intensity\",\"authors\":\"Nicole Tin*,&nbsp;Mandeep Chauhan,&nbsp;Kennedy Agwamba,&nbsp;Yibai Sun,&nbsp;Astrid Parsons,&nbsp;Philippa Payne and Remus Osan*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c02427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The application of green chemistry is critical for cultivating environmental responsibility and sustainable practices in pharmaceutical manufacturing. Process mass intensity (PMI) is a key metric that quantifies the resource efficiency of a manufacturing process, but determining what constitutes a successful PMI of a specific molecule is challenging. A recent approach correlated molecular features to a crowdsourced definition of molecular complexity to determine PMI targets. While recent machine learning tools show promise in predicting molecular complexity, a more extensive application could significantly optimize manufacturing processes. To this end, we refine and expand upon the SMART-PMI tool by Sheridan et al. to create an open-source model and application. Our solution emphasizes explainability and parsimony to facilitate a nuanced understanding of prediction and ensure informed decision-making. The resulting model uses four descriptors─the heteroatom count, stereocenter count, unique topological torsion, and connectivity index chi4n─to compute molecular complexity with a comparable 82.6% predictive accuracy and 0.349 RMSE. We develop a corresponding app that takes in structured data files (SDF) to rapidly quantify molecular complexity and provide a PMI target that can be used to drive process development activities. By integrating machine learning explainability and open-source accessibility, we provide flexible tools to advance the field of green chemistry and sustainable pharmaceutical manufacturing.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c02427\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c02427\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c02427","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

绿色化学的应用对于培养制药业的环境责任感和可持续发展实践至关重要。过程质量强度(PMI)是量化生产过程资源效率的一个关键指标,但确定特定分子的成功 PMI 具有挑战性。最近的一种方法将分子特征与分子复杂性的众包定义相关联,以确定 PMI 目标。虽然最近的机器学习工具在预测分子复杂性方面大有可为,但更广泛的应用可以显著优化生产流程。为此,我们完善并扩展了 Sheridan 等人的 SMART-PMI 工具,创建了一个开源模型和应用程序。我们的解决方案强调可解释性和简约性,以促进对预测的细致理解,确保做出明智的决策。由此产生的模型使用四个描述符(杂原子数、立体中心数、独特拓扑扭转和连接指数 chi4n)来计算分子复杂性,预测准确率为 82.6%,均方根误差为 0.349。我们开发了一个相应的应用程序,它能接收结构化数据文件(SDF),快速量化分子复杂性,并提供可用于推动工艺开发活动的 PMI 目标。通过整合机器学习的可解释性和开源的可访问性,我们提供了灵活的工具来推动绿色化学和可持续制药领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Molecular Complexity with Open-Source Machine Learning Approaches to Predict Process Mass Intensity

The application of green chemistry is critical for cultivating environmental responsibility and sustainable practices in pharmaceutical manufacturing. Process mass intensity (PMI) is a key metric that quantifies the resource efficiency of a manufacturing process, but determining what constitutes a successful PMI of a specific molecule is challenging. A recent approach correlated molecular features to a crowdsourced definition of molecular complexity to determine PMI targets. While recent machine learning tools show promise in predicting molecular complexity, a more extensive application could significantly optimize manufacturing processes. To this end, we refine and expand upon the SMART-PMI tool by Sheridan et al. to create an open-source model and application. Our solution emphasizes explainability and parsimony to facilitate a nuanced understanding of prediction and ensure informed decision-making. The resulting model uses four descriptors─the heteroatom count, stereocenter count, unique topological torsion, and connectivity index chi4n─to compute molecular complexity with a comparable 82.6% predictive accuracy and 0.349 RMSE. We develop a corresponding app that takes in structured data files (SDF) to rapidly quantify molecular complexity and provide a PMI target that can be used to drive process development activities. By integrating machine learning explainability and open-source accessibility, we provide flexible tools to advance the field of green chemistry and sustainable pharmaceutical manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Repair of Underwater Concrete Cracks on Dam Surface: Optimization Analysis of the Grouting Process with Surface Sealing CO2/H2 Separation by Synergistic Enhanced Hydrate Method with SDS and R134a Gold Nanoparticles in Nanobiotechnology: From Synthesis to Biosensing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1