从高保真数据中学习亚网格尺度闭合的闭式方程:前景与挑战

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-02 DOI:10.1029/2023MS003874
Karan Jakhar, Yifei Guan, Rambod Mojgani, Ashesh Chattopadhyay, Pedram Hassanzadeh
{"title":"从高保真数据中学习亚网格尺度闭合的闭式方程:前景与挑战","authors":"Karan Jakhar,&nbsp;Yifei Guan,&nbsp;Rambod Mojgani,&nbsp;Ashesh Chattopadhyay,&nbsp;Pedram Hassanzadeh","doi":"10.1029/2023MS003874","DOIUrl":null,"url":null,"abstract":"<p>There is growing interest in discovering interpretable, closed-form equations for subgrid-scale (SGS) closures/parameterizations of complex processes in Earth systems. Here, we apply a common equation-discovery technique with expansive libraries to learn closures from filtered direct numerical simulations of 2D turbulence and Rayleigh-Bénard convection (RBC). Across common filters (e.g., Gaussian, box), we robustly discover closures of the same form for momentum and heat fluxes. These closures depend on nonlinear combinations of gradients of filtered variables, with constants that are independent of the fluid/flow properties and only depend on filter type/size. We show that these closures are the nonlinear gradient model (NGM), which is derivable analytically using Taylor-series. Indeed, we suggest that with common (physics-free) equation-discovery algorithms, for many common systems/physics, discovered closures are consistent with the leading term of the Taylor-series (except when cutoff filters are used). Like previous studies, we find that large-eddy simulations with NGM closures are unstable, despite significant similarities between the true and NGM-predicted fluxes (correlations &gt;0.95). We identify two shortcomings as reasons for these instabilities: in 2D, NGM produces zero kinetic energy transfer between resolved and subgrid scales, lacking both diffusion and backscattering. In RBC, potential energy backscattering is poorly predicted. Moreover, we show that SGS fluxes diagnosed from data, presumed the “truth” for discovery, depend on filtering procedures and are not unique. Accordingly, to learn accurate, stable closures in future work, we propose several ideas around using physics-informed libraries, loss functions, and metrics. These findings are relevant to closure modeling of any multi-scale system.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003874","citationCount":"0","resultStr":"{\"title\":\"Learning Closed-Form Equations for Subgrid-Scale Closures From High-Fidelity Data: Promises and Challenges\",\"authors\":\"Karan Jakhar,&nbsp;Yifei Guan,&nbsp;Rambod Mojgani,&nbsp;Ashesh Chattopadhyay,&nbsp;Pedram Hassanzadeh\",\"doi\":\"10.1029/2023MS003874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is growing interest in discovering interpretable, closed-form equations for subgrid-scale (SGS) closures/parameterizations of complex processes in Earth systems. Here, we apply a common equation-discovery technique with expansive libraries to learn closures from filtered direct numerical simulations of 2D turbulence and Rayleigh-Bénard convection (RBC). Across common filters (e.g., Gaussian, box), we robustly discover closures of the same form for momentum and heat fluxes. These closures depend on nonlinear combinations of gradients of filtered variables, with constants that are independent of the fluid/flow properties and only depend on filter type/size. We show that these closures are the nonlinear gradient model (NGM), which is derivable analytically using Taylor-series. Indeed, we suggest that with common (physics-free) equation-discovery algorithms, for many common systems/physics, discovered closures are consistent with the leading term of the Taylor-series (except when cutoff filters are used). Like previous studies, we find that large-eddy simulations with NGM closures are unstable, despite significant similarities between the true and NGM-predicted fluxes (correlations &gt;0.95). We identify two shortcomings as reasons for these instabilities: in 2D, NGM produces zero kinetic energy transfer between resolved and subgrid scales, lacking both diffusion and backscattering. In RBC, potential energy backscattering is poorly predicted. Moreover, we show that SGS fluxes diagnosed from data, presumed the “truth” for discovery, depend on filtering procedures and are not unique. Accordingly, to learn accurate, stable closures in future work, we propose several ideas around using physics-informed libraries, loss functions, and metrics. These findings are relevant to closure modeling of any multi-scale system.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003874\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003874\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003874","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为地球系统复杂过程的亚网格尺度(SGS)闭合/参数化发现可解释的闭式方程的兴趣日益浓厚。在此,我们应用一种具有扩展性库的通用方程发现技术,从二维湍流和瑞利-贝纳德对流(RBC)的滤波直接数值模拟中学习闭式方程。通过常见的滤波器(如高斯滤波器、盒式滤波器),我们稳健地发现了动量和热通量的相同形式闭包。这些闭合取决于滤波变量梯度的非线性组合,其常数与流体/流动特性无关,仅取决于滤波类型/大小。我们证明,这些闭合是非线性梯度模型(NGM),可通过泰勒序列进行分析推导。事实上,我们认为,对于许多常见系统/物理,使用普通(无物理)方程发现算法,发现的闭合与泰勒序列的前导项一致(使用截止滤波器时除外)。与之前的研究一样,我们发现,尽管真实通量与 NGM 预测通量之间存在显著的相似性(相关性为 0.95),但 NGM 闭合的大涡度模拟并不稳定。我们发现造成这些不稳定的原因有两个:在二维模拟中,NGM 在解析尺度和子网格尺度之间产生的动能传递为零,缺乏扩散和反向散射。在 RBC 中,对势能反向散射的预测很差。此外,我们还表明,从数据中诊断出的 SGS 通量被假定为发现的 "真相",但它取决于过滤程序,并不是唯一的。因此,为了在未来的工作中学习准确、稳定的闭合,我们围绕使用物理信息库、损失函数和度量标准提出了一些想法。这些发现与任何多尺度系统的闭合建模都息息相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Closed-Form Equations for Subgrid-Scale Closures From High-Fidelity Data: Promises and Challenges

There is growing interest in discovering interpretable, closed-form equations for subgrid-scale (SGS) closures/parameterizations of complex processes in Earth systems. Here, we apply a common equation-discovery technique with expansive libraries to learn closures from filtered direct numerical simulations of 2D turbulence and Rayleigh-Bénard convection (RBC). Across common filters (e.g., Gaussian, box), we robustly discover closures of the same form for momentum and heat fluxes. These closures depend on nonlinear combinations of gradients of filtered variables, with constants that are independent of the fluid/flow properties and only depend on filter type/size. We show that these closures are the nonlinear gradient model (NGM), which is derivable analytically using Taylor-series. Indeed, we suggest that with common (physics-free) equation-discovery algorithms, for many common systems/physics, discovered closures are consistent with the leading term of the Taylor-series (except when cutoff filters are used). Like previous studies, we find that large-eddy simulations with NGM closures are unstable, despite significant similarities between the true and NGM-predicted fluxes (correlations >0.95). We identify two shortcomings as reasons for these instabilities: in 2D, NGM produces zero kinetic energy transfer between resolved and subgrid scales, lacking both diffusion and backscattering. In RBC, potential energy backscattering is poorly predicted. Moreover, we show that SGS fluxes diagnosed from data, presumed the “truth” for discovery, depend on filtering procedures and are not unique. Accordingly, to learn accurate, stable closures in future work, we propose several ideas around using physics-informed libraries, loss functions, and metrics. These findings are relevant to closure modeling of any multi-scale system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
A Lake Biogeochemistry Model for Global Methane Emissions: Model Development, Site-Level Validation, and Global Applicability Evaluation of Autoconversion Representation in E3SMv2 Using an Ensemble of Large-Eddy Simulations of Low-Level Warm Clouds Description and Evaluation of the CNRM-Cerfacs Climate Prediction System (C3PS) Generative Diffusion for Regional Surrogate Models From Sea-Ice Simulations Contributions of Irrigation Modeling, Soil Moisture and Snow Data Assimilation to High-Resolution Water Budget Estimates Over the Po Basin: Progress Towards Digital Replicas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1