{"title":"汗液外泌体:治疗癌症的新型尖端纳米药物","authors":"Bikram Dhara, Subham Sarkar","doi":"10.1002/ctd2.334","DOIUrl":null,"url":null,"abstract":"<p>Exosomes can be defined as extracellular vesicles, of size ranging from 30 to 150 nm, secreted from almost all kinds of cells and can also be obtained from the body fluids. Exosomes have different components depending on the type of cell from which they originate. Exosomes are capable of transporting various molecules such as proteins, nucleic acids, chemical compounds and metabolites. Experiments show that exosomes can perform important functions in cell growth, migration, differentiation, neuronal signalling, immune cell modulation. Exosomes can also be used in cancer therapy, as they can be key players in intercellular communication and signalling. Experiments have also demonstrated that exosomes are chief players in viral persistence and dissemination. The reasons why application of exosomes in targeted therapy is gaining significance are their ability to initiate cellular responses, high tolerance levels in host cells and high efficiency in penetrating other cells. Exosomes can be used both as therapeutic agents and escorts of drugs. Even though numerous studies have been performed in search of better anticancer therapies, most of them have come to a halt due to the failure in achieving a therapy best in all parameters. However, both in vitro and in vivo application of exosomes in diagnosis and therapy of tumours are prospective and has a future.</p>","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.334","citationCount":"0","resultStr":"{\"title\":\"Sweat exosomes: A new cutting edge nanomedicine in cancer treatment\",\"authors\":\"Bikram Dhara, Subham Sarkar\",\"doi\":\"10.1002/ctd2.334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exosomes can be defined as extracellular vesicles, of size ranging from 30 to 150 nm, secreted from almost all kinds of cells and can also be obtained from the body fluids. Exosomes have different components depending on the type of cell from which they originate. Exosomes are capable of transporting various molecules such as proteins, nucleic acids, chemical compounds and metabolites. Experiments show that exosomes can perform important functions in cell growth, migration, differentiation, neuronal signalling, immune cell modulation. Exosomes can also be used in cancer therapy, as they can be key players in intercellular communication and signalling. Experiments have also demonstrated that exosomes are chief players in viral persistence and dissemination. The reasons why application of exosomes in targeted therapy is gaining significance are their ability to initiate cellular responses, high tolerance levels in host cells and high efficiency in penetrating other cells. Exosomes can be used both as therapeutic agents and escorts of drugs. Even though numerous studies have been performed in search of better anticancer therapies, most of them have come to a halt due to the failure in achieving a therapy best in all parameters. However, both in vitro and in vivo application of exosomes in diagnosis and therapy of tumours are prospective and has a future.</p>\",\"PeriodicalId\":72605,\"journal\":{\"name\":\"Clinical and translational discovery\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.334\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and translational discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ctd2.334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and translational discovery","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctd2.334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sweat exosomes: A new cutting edge nanomedicine in cancer treatment
Exosomes can be defined as extracellular vesicles, of size ranging from 30 to 150 nm, secreted from almost all kinds of cells and can also be obtained from the body fluids. Exosomes have different components depending on the type of cell from which they originate. Exosomes are capable of transporting various molecules such as proteins, nucleic acids, chemical compounds and metabolites. Experiments show that exosomes can perform important functions in cell growth, migration, differentiation, neuronal signalling, immune cell modulation. Exosomes can also be used in cancer therapy, as they can be key players in intercellular communication and signalling. Experiments have also demonstrated that exosomes are chief players in viral persistence and dissemination. The reasons why application of exosomes in targeted therapy is gaining significance are their ability to initiate cellular responses, high tolerance levels in host cells and high efficiency in penetrating other cells. Exosomes can be used both as therapeutic agents and escorts of drugs. Even though numerous studies have been performed in search of better anticancer therapies, most of them have come to a halt due to the failure in achieving a therapy best in all parameters. However, both in vitro and in vivo application of exosomes in diagnosis and therapy of tumours are prospective and has a future.