Dan Huang, Luyi Qiu, Zifeng Liu, Yi Ding, Mingsheng Cao
{"title":"Res-MulFra:用于脑肿瘤分割的多层次和多尺度框架","authors":"Dan Huang, Luyi Qiu, Zifeng Liu, Yi Ding, Mingsheng Cao","doi":"10.1002/ima.23135","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In clinical diagnosis and surgical planning, extracting brain tumors from magnetic resonance images (MRI) is very important. Nevertheless, considering the high variability and imbalance of the brain tumor datasets, the way of designing a deep neural network for accurately segmenting the brain tumor still challenges the researchers. Moreover, as the number of convolutional layers increases, the deep feature maps cannot provide fine-grained spatial information, and this feature information is useful for segmenting brain tumors from the MRI. Aiming to solve this problem, a brain tumor segmenting method of residual multilevel and multiscale framework (Res-MulFra) is proposed in this article. In the proposed framework, the multilevel is realized by stacking the proposed RMFM-based segmentation network (RMFMSegNet), which is mainly used to leverage the prior knowledge to gain a better brain tumor segmentation performance. The multiscale is implemented by the proposed RMFMSegNet, which includes both the parallel multibranch structure and the serial multibranch structure, and is mainly designed for obtaining the multiscale feature information. Moreover, from various receptive fields, a residual multiscale feature fusion module (RMFM) is also proposed to effectively combine the contextual feature information. Furthermore, in order to gain a better brain tumor segmentation performance, the channel attention module is also adopted. Through assessing the devised framework on the BraTS dataset and comparing it with other advanced methods, the effectiveness of the Res-MulFra is verified by the extensive experimental results. For the BraTS2015 testing dataset, the Dice value of the proposed method is 0.85 for the complete area, 0.72 for the core area, and 0.62 for the enhanced area.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Res-MulFra: Multilevel and Multiscale Framework for Brain Tumor Segmentation\",\"authors\":\"Dan Huang, Luyi Qiu, Zifeng Liu, Yi Ding, Mingsheng Cao\",\"doi\":\"10.1002/ima.23135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In clinical diagnosis and surgical planning, extracting brain tumors from magnetic resonance images (MRI) is very important. Nevertheless, considering the high variability and imbalance of the brain tumor datasets, the way of designing a deep neural network for accurately segmenting the brain tumor still challenges the researchers. Moreover, as the number of convolutional layers increases, the deep feature maps cannot provide fine-grained spatial information, and this feature information is useful for segmenting brain tumors from the MRI. Aiming to solve this problem, a brain tumor segmenting method of residual multilevel and multiscale framework (Res-MulFra) is proposed in this article. In the proposed framework, the multilevel is realized by stacking the proposed RMFM-based segmentation network (RMFMSegNet), which is mainly used to leverage the prior knowledge to gain a better brain tumor segmentation performance. The multiscale is implemented by the proposed RMFMSegNet, which includes both the parallel multibranch structure and the serial multibranch structure, and is mainly designed for obtaining the multiscale feature information. Moreover, from various receptive fields, a residual multiscale feature fusion module (RMFM) is also proposed to effectively combine the contextual feature information. Furthermore, in order to gain a better brain tumor segmentation performance, the channel attention module is also adopted. Through assessing the devised framework on the BraTS dataset and comparing it with other advanced methods, the effectiveness of the Res-MulFra is verified by the extensive experimental results. For the BraTS2015 testing dataset, the Dice value of the proposed method is 0.85 for the complete area, 0.72 for the core area, and 0.62 for the enhanced area.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23135\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23135","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Res-MulFra: Multilevel and Multiscale Framework for Brain Tumor Segmentation
In clinical diagnosis and surgical planning, extracting brain tumors from magnetic resonance images (MRI) is very important. Nevertheless, considering the high variability and imbalance of the brain tumor datasets, the way of designing a deep neural network for accurately segmenting the brain tumor still challenges the researchers. Moreover, as the number of convolutional layers increases, the deep feature maps cannot provide fine-grained spatial information, and this feature information is useful for segmenting brain tumors from the MRI. Aiming to solve this problem, a brain tumor segmenting method of residual multilevel and multiscale framework (Res-MulFra) is proposed in this article. In the proposed framework, the multilevel is realized by stacking the proposed RMFM-based segmentation network (RMFMSegNet), which is mainly used to leverage the prior knowledge to gain a better brain tumor segmentation performance. The multiscale is implemented by the proposed RMFMSegNet, which includes both the parallel multibranch structure and the serial multibranch structure, and is mainly designed for obtaining the multiscale feature information. Moreover, from various receptive fields, a residual multiscale feature fusion module (RMFM) is also proposed to effectively combine the contextual feature information. Furthermore, in order to gain a better brain tumor segmentation performance, the channel attention module is also adopted. Through assessing the devised framework on the BraTS dataset and comparing it with other advanced methods, the effectiveness of the Res-MulFra is verified by the extensive experimental results. For the BraTS2015 testing dataset, the Dice value of the proposed method is 0.85 for the complete area, 0.72 for the core area, and 0.62 for the enhanced area.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.