界面氢键对光催化氢演化的积极和消极影响。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-07-05 DOI:10.1021/jacs.4c04271
Zhongqiu Lin, Hikaru Saito, Hiromasa Sato, Toshiki Sugimoto
{"title":"界面氢键对光催化氢演化的积极和消极影响。","authors":"Zhongqiu Lin, Hikaru Saito, Hiromasa Sato, Toshiki Sugimoto","doi":"10.1021/jacs.4c04271","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the behavior of water molecules at solid-liquid interfaces is crucial for various applications such as photocatalytic water splitting, a key technology for sustainable fuel production and chemical transformations. Despite extensive studies conducted in the past, the impact of the microscopic structure of interfacial water molecules on photocatalytic reactivity has not been directly examined. In this study, using real-time mass spectrometry and Fourier-transform infrared spectroscopy, we demonstrated the crucial role of hydrogen bond (H-bond) networks on the photocatalytic hydrogen evolution in thickness-controlled water adsorption layers on various TiO<sub>2</sub> photocatalysts. Under controlled water vapor environments with relative humidity (RH) below 70%, we observed a monotonic increase in the H<sub>2</sub> formation rate with increasing RH, indicating that reactive water molecules were present not only in the first adsorbed layer but also in several overlying layers. In contrast, at RH > 70%, when more than three water layers covered the catalyst surface, the H<sub>2</sub> formation rate turned to decrease dramatically because of the structural rearrangement and hardening of the interfacial H-bond network induced during further water adsorption. This unique many-body effect of interfacial water was consistently observed for various TiO<sub>2</sub> particles with different crystalline structures, including brookite, anatase, and a mixture of anatase and rutile. Our results demonstrated that depositing several water layers in a water vapor environment with RH ∼ 70% is optimal for photocatalytic hydrogen evolution rather than liquid-phase reaction conditions in aqueous solutions. This study provides molecular-level insights into designing interfacial water conditions to enhance photocatalytic performance.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive and Negative Impacts of Interfacial Hydrogen Bonds on Photocatalytic Hydrogen Evolution.\",\"authors\":\"Zhongqiu Lin, Hikaru Saito, Hiromasa Sato, Toshiki Sugimoto\",\"doi\":\"10.1021/jacs.4c04271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the behavior of water molecules at solid-liquid interfaces is crucial for various applications such as photocatalytic water splitting, a key technology for sustainable fuel production and chemical transformations. Despite extensive studies conducted in the past, the impact of the microscopic structure of interfacial water molecules on photocatalytic reactivity has not been directly examined. In this study, using real-time mass spectrometry and Fourier-transform infrared spectroscopy, we demonstrated the crucial role of hydrogen bond (H-bond) networks on the photocatalytic hydrogen evolution in thickness-controlled water adsorption layers on various TiO<sub>2</sub> photocatalysts. Under controlled water vapor environments with relative humidity (RH) below 70%, we observed a monotonic increase in the H<sub>2</sub> formation rate with increasing RH, indicating that reactive water molecules were present not only in the first adsorbed layer but also in several overlying layers. In contrast, at RH > 70%, when more than three water layers covered the catalyst surface, the H<sub>2</sub> formation rate turned to decrease dramatically because of the structural rearrangement and hardening of the interfacial H-bond network induced during further water adsorption. This unique many-body effect of interfacial water was consistently observed for various TiO<sub>2</sub> particles with different crystalline structures, including brookite, anatase, and a mixture of anatase and rutile. Our results demonstrated that depositing several water layers in a water vapor environment with RH ∼ 70% is optimal for photocatalytic hydrogen evolution rather than liquid-phase reaction conditions in aqueous solutions. This study provides molecular-level insights into designing interfacial water conditions to enhance photocatalytic performance.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c04271\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c04271","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解水分子在固液界面上的行为对各种应用至关重要,例如光催化水分离,这是一种用于可持续燃料生产和化学转化的关键技术。尽管过去进行了大量研究,但界面水分子的微观结构对光催化反应性的影响尚未得到直接研究。在本研究中,我们利用实时质谱法和傅立叶变换红外光谱法证明了氢键(H-bond)网络对各种 TiO2 光催化剂上厚度可控的水吸附层中光催化氢演化的关键作用。在相对湿度(RH)低于 70% 的受控水蒸气环境下,我们观察到随着相对湿度的增加,氢形成率呈单调增长,这表明活性水分子不仅存在于第一吸附层,还存在于多个上覆层中。相反,当相对湿度大于 70% 时,当催化剂表面覆盖了三层以上的水层时,由于进一步吸附水导致了界面 H 键网络的结构重排和硬化,H2 生成率急剧下降。在具有不同晶体结构的各种二氧化钛颗粒(包括褐铁矿、锐钛矿以及锐钛矿和金红石的混合物)中,都能持续观察到这种独特的界面水多体效应。我们的研究结果表明,在相对湿度为 70% 的水蒸气环境中沉积多个水层是光催化氢进化的最佳条件,而不是水溶液中的液相反应条件。这项研究为设计界面水条件以提高光催化性能提供了分子层面的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Positive and Negative Impacts of Interfacial Hydrogen Bonds on Photocatalytic Hydrogen Evolution.

Understanding the behavior of water molecules at solid-liquid interfaces is crucial for various applications such as photocatalytic water splitting, a key technology for sustainable fuel production and chemical transformations. Despite extensive studies conducted in the past, the impact of the microscopic structure of interfacial water molecules on photocatalytic reactivity has not been directly examined. In this study, using real-time mass spectrometry and Fourier-transform infrared spectroscopy, we demonstrated the crucial role of hydrogen bond (H-bond) networks on the photocatalytic hydrogen evolution in thickness-controlled water adsorption layers on various TiO2 photocatalysts. Under controlled water vapor environments with relative humidity (RH) below 70%, we observed a monotonic increase in the H2 formation rate with increasing RH, indicating that reactive water molecules were present not only in the first adsorbed layer but also in several overlying layers. In contrast, at RH > 70%, when more than three water layers covered the catalyst surface, the H2 formation rate turned to decrease dramatically because of the structural rearrangement and hardening of the interfacial H-bond network induced during further water adsorption. This unique many-body effect of interfacial water was consistently observed for various TiO2 particles with different crystalline structures, including brookite, anatase, and a mixture of anatase and rutile. Our results demonstrated that depositing several water layers in a water vapor environment with RH ∼ 70% is optimal for photocatalytic hydrogen evolution rather than liquid-phase reaction conditions in aqueous solutions. This study provides molecular-level insights into designing interfacial water conditions to enhance photocatalytic performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
A Radical Strategy for the Alkylation of Amides with Alkyl Halides by Merging Boryl Radical-Mediated Halogen-Atom Transfer and Copper Catalysis. Allosteric Control of the Catalytic Properties of Dipeptide-Based Supramolecular Assemblies. Aptamer-Based Enforced Phosphatase-Recruiting Chimeras Inhibit Receptor Tyrosine Kinase Signal Transduction. Carbon-Spaced Tandem-Disulfide Bond Bridge Design Addresses Limitations of Homodimer Prodrug Nanoassemblies: Enhancing Both Stability and Activatability. Correction to "Probing Ion-Receptor Interactions in Halide Complexes of Octamethyl Calix[4]Pyrrole".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1