Robert Petrocelli, Ankur Doshi, Chrystia Slywotzky, Marissa Savino, Kira Melamud, Angela Tong, Nicole Hindman
{"title":"O-RADS MRI 评分在区分良性和恶性卵巢畸胎瘤中的表现:用于区分 O-RADS 4 和 O-RADS 2 的磁共振特征分析","authors":"Robert Petrocelli, Ankur Doshi, Chrystia Slywotzky, Marissa Savino, Kira Melamud, Angela Tong, Nicole Hindman","doi":"10.1097/RCT.0000000000001629","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of the study is to evaluate the performance of the ovarian-adnexal reporting and data system magnetic resonance imaging (O-RADS MRI) score and perform individual MRI feature analysis for differentiating between benign and malignant ovarian teratomas.</p><p><strong>Methods: </strong>In this institutional review board-approved retrospective study, consecutive patients with a pathology-proven fat-containing ovarian mass imaged with contrast-enhanced MRI (1.5T or 3T) from 2013 to 2022 were included. Two blinded radiologists independently evaluated masses per the O-RADS MRI lexicon, including having a \"characteristic\" or \"large\" Rokitansky nodule (RN). Additional features analyzed included the following: nodule size/percentage volume relative to total teratoma volume, presence of bulk/intravoxel fat in the nodule, diffusion restriction in the nodule, angular interface, nodule extension through the teratoma border, presence/type of nodule enhancement pattern (solid versus peripheral), and evidence for metastatic disease. An overall O-RADS MRI score was assigned. Patient and lesion features associated with malignancy were evaluated and used to create a malignant teratoma score. χ 2 , Fisher's exact tests, receiver operating characteristic curve, and κ analysis was performed.</p><p><strong>Results: </strong>One hundred thirty-seven women (median age 34, range 9-84 years) with 123 benign and 14 malignant lesions were included. Mean teratoma size was 7.3 cm (malignant: 14.4 cm, benign: 6.5 cm). 18/123 (14.6%) of benign teratomas were assigned an O-RADS 4 based on the presence of a \"large\" (11/18) or \"noncharacteristic\" (12/18) RN. 12/14 malignant nodules occupied >25% of the total teratoma volume ( P = 0.09). Features associated with malignancy included the following: age <18 years, an enhancing noncharacteristic RN, teratoma size >12 cm, irregular cystic border, and extralesional extension; these were incorporated into a malignant teratoma score, with a score of 2 or more associated with area under the curve of 0.991 for reviewer 1 and 0.993 for reviewer 2. Peripheral enhancement in a RN was never seen with malignancy (64/123 benign, 0/14 malignant) and would have appropriated downgraded 9/18 overcalled O-RADS 4 benign teratomas.</p><p><strong>Conclusions: </strong>O-RADS MRI overcalled 15% (18/123) benign teratomas as O-RADS 4 but correctly captured all malignant teratomas. We propose defining a \"characteristic\" RN as an intravoxel or bulk fat-containing nodule. Observation of a peripheral rim of enhancement in a noncharacteristic RN allowed more accurate prediction of benignity and should be added to the MRI lexicon for improved O-RADS performance.</p>","PeriodicalId":15402,"journal":{"name":"Journal of Computer Assisted Tomography","volume":" ","pages":"749-758"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of O-RADS MRI Score in Differentiating Benign From Malignant Ovarian Teratomas: MR Feature Analysis for Differentiating O-RADS 4 From O-RADS 2.\",\"authors\":\"Robert Petrocelli, Ankur Doshi, Chrystia Slywotzky, Marissa Savino, Kira Melamud, Angela Tong, Nicole Hindman\",\"doi\":\"10.1097/RCT.0000000000001629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of the study is to evaluate the performance of the ovarian-adnexal reporting and data system magnetic resonance imaging (O-RADS MRI) score and perform individual MRI feature analysis for differentiating between benign and malignant ovarian teratomas.</p><p><strong>Methods: </strong>In this institutional review board-approved retrospective study, consecutive patients with a pathology-proven fat-containing ovarian mass imaged with contrast-enhanced MRI (1.5T or 3T) from 2013 to 2022 were included. Two blinded radiologists independently evaluated masses per the O-RADS MRI lexicon, including having a \\\"characteristic\\\" or \\\"large\\\" Rokitansky nodule (RN). Additional features analyzed included the following: nodule size/percentage volume relative to total teratoma volume, presence of bulk/intravoxel fat in the nodule, diffusion restriction in the nodule, angular interface, nodule extension through the teratoma border, presence/type of nodule enhancement pattern (solid versus peripheral), and evidence for metastatic disease. An overall O-RADS MRI score was assigned. Patient and lesion features associated with malignancy were evaluated and used to create a malignant teratoma score. χ 2 , Fisher's exact tests, receiver operating characteristic curve, and κ analysis was performed.</p><p><strong>Results: </strong>One hundred thirty-seven women (median age 34, range 9-84 years) with 123 benign and 14 malignant lesions were included. Mean teratoma size was 7.3 cm (malignant: 14.4 cm, benign: 6.5 cm). 18/123 (14.6%) of benign teratomas were assigned an O-RADS 4 based on the presence of a \\\"large\\\" (11/18) or \\\"noncharacteristic\\\" (12/18) RN. 12/14 malignant nodules occupied >25% of the total teratoma volume ( P = 0.09). Features associated with malignancy included the following: age <18 years, an enhancing noncharacteristic RN, teratoma size >12 cm, irregular cystic border, and extralesional extension; these were incorporated into a malignant teratoma score, with a score of 2 or more associated with area under the curve of 0.991 for reviewer 1 and 0.993 for reviewer 2. Peripheral enhancement in a RN was never seen with malignancy (64/123 benign, 0/14 malignant) and would have appropriated downgraded 9/18 overcalled O-RADS 4 benign teratomas.</p><p><strong>Conclusions: </strong>O-RADS MRI overcalled 15% (18/123) benign teratomas as O-RADS 4 but correctly captured all malignant teratomas. We propose defining a \\\"characteristic\\\" RN as an intravoxel or bulk fat-containing nodule. Observation of a peripheral rim of enhancement in a noncharacteristic RN allowed more accurate prediction of benignity and should be added to the MRI lexicon for improved O-RADS performance.</p>\",\"PeriodicalId\":15402,\"journal\":{\"name\":\"Journal of Computer Assisted Tomography\",\"volume\":\" \",\"pages\":\"749-758\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Assisted Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RCT.0000000000001629\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RCT.0000000000001629","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Performance of O-RADS MRI Score in Differentiating Benign From Malignant Ovarian Teratomas: MR Feature Analysis for Differentiating O-RADS 4 From O-RADS 2.
Objective: The aim of the study is to evaluate the performance of the ovarian-adnexal reporting and data system magnetic resonance imaging (O-RADS MRI) score and perform individual MRI feature analysis for differentiating between benign and malignant ovarian teratomas.
Methods: In this institutional review board-approved retrospective study, consecutive patients with a pathology-proven fat-containing ovarian mass imaged with contrast-enhanced MRI (1.5T or 3T) from 2013 to 2022 were included. Two blinded radiologists independently evaluated masses per the O-RADS MRI lexicon, including having a "characteristic" or "large" Rokitansky nodule (RN). Additional features analyzed included the following: nodule size/percentage volume relative to total teratoma volume, presence of bulk/intravoxel fat in the nodule, diffusion restriction in the nodule, angular interface, nodule extension through the teratoma border, presence/type of nodule enhancement pattern (solid versus peripheral), and evidence for metastatic disease. An overall O-RADS MRI score was assigned. Patient and lesion features associated with malignancy were evaluated and used to create a malignant teratoma score. χ 2 , Fisher's exact tests, receiver operating characteristic curve, and κ analysis was performed.
Results: One hundred thirty-seven women (median age 34, range 9-84 years) with 123 benign and 14 malignant lesions were included. Mean teratoma size was 7.3 cm (malignant: 14.4 cm, benign: 6.5 cm). 18/123 (14.6%) of benign teratomas were assigned an O-RADS 4 based on the presence of a "large" (11/18) or "noncharacteristic" (12/18) RN. 12/14 malignant nodules occupied >25% of the total teratoma volume ( P = 0.09). Features associated with malignancy included the following: age <18 years, an enhancing noncharacteristic RN, teratoma size >12 cm, irregular cystic border, and extralesional extension; these were incorporated into a malignant teratoma score, with a score of 2 or more associated with area under the curve of 0.991 for reviewer 1 and 0.993 for reviewer 2. Peripheral enhancement in a RN was never seen with malignancy (64/123 benign, 0/14 malignant) and would have appropriated downgraded 9/18 overcalled O-RADS 4 benign teratomas.
Conclusions: O-RADS MRI overcalled 15% (18/123) benign teratomas as O-RADS 4 but correctly captured all malignant teratomas. We propose defining a "characteristic" RN as an intravoxel or bulk fat-containing nodule. Observation of a peripheral rim of enhancement in a noncharacteristic RN allowed more accurate prediction of benignity and should be added to the MRI lexicon for improved O-RADS performance.
期刊介绍:
The mission of Journal of Computer Assisted Tomography is to showcase the latest clinical and research developments in CT, MR, and closely related diagnostic techniques. We encourage submission of both original research and review articles that have immediate or promissory clinical applications. Topics of special interest include: 1) functional MR and CT of the brain and body; 2) advanced/innovative MRI techniques (diffusion, perfusion, rapid scanning); and 3) advanced/innovative CT techniques (perfusion, multi-energy, dose-reduction, and processing).