观影过程中海马亚区连接模式的寿命差异

IF 3.7 3区 医学 Q2 GERIATRICS & GERONTOLOGY Neurobiology of Aging Pub Date : 2024-06-30 DOI:10.1016/j.neurobiolaging.2024.06.006
Can Fenerci , Roni Setton , Giulia Baracchini , Jamie Snytte , R. Nathan Spreng , Cam CAN , Signy Sheldon
{"title":"观影过程中海马亚区连接模式的寿命差异","authors":"Can Fenerci ,&nbsp;Roni Setton ,&nbsp;Giulia Baracchini ,&nbsp;Jamie Snytte ,&nbsp;R. Nathan Spreng ,&nbsp;Cam CAN ,&nbsp;Signy Sheldon","doi":"10.1016/j.neurobiolaging.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18–88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"141 ","pages":"Pages 182-193"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifespan differences in hippocampal subregion connectivity patterns during movie watching\",\"authors\":\"Can Fenerci ,&nbsp;Roni Setton ,&nbsp;Giulia Baracchini ,&nbsp;Jamie Snytte ,&nbsp;R. Nathan Spreng ,&nbsp;Cam CAN ,&nbsp;Signy Sheldon\",\"doi\":\"10.1016/j.neurobiolaging.2024.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18–88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.</p></div>\",\"PeriodicalId\":19110,\"journal\":{\"name\":\"Neurobiology of Aging\",\"volume\":\"141 \",\"pages\":\"Pages 182-193\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Aging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0197458024001246\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458024001246","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

与年龄有关的外显记忆衰退归因于海马体的功能变化。目前尚不清楚的是,衰老如何影响海马体在外显记忆处理过程中与大脑其他部分的功能连接。我们研究了来自 CamCAN 数据集的 fMRI 数据,在该数据集中,一大批参与者观看了一部电影(N = 643;18-88 岁),这是自然外显记忆编码的代表。我们研究了整个生命周期中海马内部(前部、后部)以及海马亚区与皮层网络之间的连接情况。衰老与海马对侧(左侧、右侧)而非同侧(前侧、后侧)海马亚区连通性的降低有关。衰老主要与海马前部和控制、背侧注意和默认模式网络附属区域之间的耦合增加有关,但与海马后部和这些区域中的某些区域之间的耦合减少有关。与年龄相关的海马-皮层(而非海马内部)回路差异可选择性地预测记忆表现的下降。我们的研究结果全面描述了与老年认知相关的海马功能拓扑,表明皮质-海马连接的变化可能是与年龄相关的记忆衰退的敏感标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lifespan differences in hippocampal subregion connectivity patterns during movie watching

Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18–88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurobiology of Aging
Neurobiology of Aging 医学-老年医学
CiteScore
8.40
自引率
2.40%
发文量
225
审稿时长
67 days
期刊介绍: Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.
期刊最新文献
Age-related synaptic signatures of brain and cognitive reserve in the rat hippocampus and parahippocampal regions Exploring morphological and microstructural signatures across the Alzheimer's spectrum and risk factors Exploring the domain specificity and the neural correlates of memory unawareness in Alzheimer's disease Erratum to: Homozygous alpha-synuclein p.A53V in familial Parkinson’s disease Corrigendum to “Triggering receptor expressed on myeloid cells-2 is involved in prion-induced microglial activation but does not contribute to prion pathogenesis in mouse brains” [Neurobiol. Aging 36 (2015) 1994–2003]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1