{"title":"基于深度迁移学习的复杂环境下云南茶叶病虫害识别。","authors":"Zhaowen Li, Jihong Sun, Yingming Shen, Ying Yang, Xijin Wang, Xinrui Wang, Peng Tian, Ye Qian","doi":"10.1186/s13007-024-01219-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The occurrence, development, and outbreak of tea diseases and pests pose a significant challenge to the quality and yield of tea, necessitating prompt identification and control measures. Given the vast array of tea diseases and pests, coupled with the intricacies of the tea planting environment, accurate and rapid diagnosis remains elusive. In addressing this issue, the present study investigates the utilization of transfer learning convolution neural networks for the identification of tea diseases and pests. Our objective is to facilitate the accurate and expeditious detection of diseases and pests affecting the Yunnan Big leaf kind of tea within its complex ecological niche.</p><p><strong>Results: </strong>Initially, we gathered 1878 image data encompassing 10 prevalent types of tea diseases and pests from complex environments within tea plantations, compiling a comprehensive dataset. Additionally, we employed data augmentation techniques to enrich the sample diversity. Leveraging the ImageNet pre-trained model, we conducted a comprehensive evaluation and identified the Xception architecture as the most effective model. Notably, the integration of an attention mechanism within the Xeption model did not yield improvements in recognition performance. Subsequently, through transfer learning and the freezing core strategy, we achieved a test accuracy rate of 98.58% and a verification accuracy rate of 98.2310%.</p><p><strong>Conclusions: </strong>These outcomes signify a significant stride towards accurate and timely detection, holding promise for enhancing the sustainability and productivity of Yunnan tea. Our findings provide a theoretical foundation and technical guidance for the development of online detection technologies for tea diseases and pests in Yunnan.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"101"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229499/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep migration learning-based recognition of diseases and insect pests in Yunnan tea under complex environments.\",\"authors\":\"Zhaowen Li, Jihong Sun, Yingming Shen, Ying Yang, Xijin Wang, Xinrui Wang, Peng Tian, Ye Qian\",\"doi\":\"10.1186/s13007-024-01219-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The occurrence, development, and outbreak of tea diseases and pests pose a significant challenge to the quality and yield of tea, necessitating prompt identification and control measures. Given the vast array of tea diseases and pests, coupled with the intricacies of the tea planting environment, accurate and rapid diagnosis remains elusive. In addressing this issue, the present study investigates the utilization of transfer learning convolution neural networks for the identification of tea diseases and pests. Our objective is to facilitate the accurate and expeditious detection of diseases and pests affecting the Yunnan Big leaf kind of tea within its complex ecological niche.</p><p><strong>Results: </strong>Initially, we gathered 1878 image data encompassing 10 prevalent types of tea diseases and pests from complex environments within tea plantations, compiling a comprehensive dataset. Additionally, we employed data augmentation techniques to enrich the sample diversity. Leveraging the ImageNet pre-trained model, we conducted a comprehensive evaluation and identified the Xception architecture as the most effective model. Notably, the integration of an attention mechanism within the Xeption model did not yield improvements in recognition performance. Subsequently, through transfer learning and the freezing core strategy, we achieved a test accuracy rate of 98.58% and a verification accuracy rate of 98.2310%.</p><p><strong>Conclusions: </strong>These outcomes signify a significant stride towards accurate and timely detection, holding promise for enhancing the sustainability and productivity of Yunnan tea. Our findings provide a theoretical foundation and technical guidance for the development of online detection technologies for tea diseases and pests in Yunnan.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"101\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229499/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01219-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01219-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Deep migration learning-based recognition of diseases and insect pests in Yunnan tea under complex environments.
Background: The occurrence, development, and outbreak of tea diseases and pests pose a significant challenge to the quality and yield of tea, necessitating prompt identification and control measures. Given the vast array of tea diseases and pests, coupled with the intricacies of the tea planting environment, accurate and rapid diagnosis remains elusive. In addressing this issue, the present study investigates the utilization of transfer learning convolution neural networks for the identification of tea diseases and pests. Our objective is to facilitate the accurate and expeditious detection of diseases and pests affecting the Yunnan Big leaf kind of tea within its complex ecological niche.
Results: Initially, we gathered 1878 image data encompassing 10 prevalent types of tea diseases and pests from complex environments within tea plantations, compiling a comprehensive dataset. Additionally, we employed data augmentation techniques to enrich the sample diversity. Leveraging the ImageNet pre-trained model, we conducted a comprehensive evaluation and identified the Xception architecture as the most effective model. Notably, the integration of an attention mechanism within the Xeption model did not yield improvements in recognition performance. Subsequently, through transfer learning and the freezing core strategy, we achieved a test accuracy rate of 98.58% and a verification accuracy rate of 98.2310%.
Conclusions: These outcomes signify a significant stride towards accurate and timely detection, holding promise for enhancing the sustainability and productivity of Yunnan tea. Our findings provide a theoretical foundation and technical guidance for the development of online detection technologies for tea diseases and pests in Yunnan.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.