Roel Meyermans, Steven Janssens, Annelies Coussé, Susanne Tinel, Wim Gorssen, Fabrice Lepot, Xavier Hubin, Patrick Mayeres, Wim Veulemans, Nathalie De Wilde, Tom Druet, Michel Georges, Carole Charlier, Edwin Claerebout, Nadine Buys
{"title":"比利时蓝犬对疥癣病易感性的遗传和基因组分析。","authors":"Roel Meyermans, Steven Janssens, Annelies Coussé, Susanne Tinel, Wim Gorssen, Fabrice Lepot, Xavier Hubin, Patrick Mayeres, Wim Veulemans, Nathalie De Wilde, Tom Druet, Michel Georges, Carole Charlier, Edwin Claerebout, Nadine Buys","doi":"10.1186/s12711-024-00921-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Psoroptic mange, caused by Psoroptes ovis mites, is affecting Belgian Blue cattle's welfare and production potential. The Belgian Blue cattle-known for its high degree of muscling, low feed conversion ratio and high beef quality-is highly susceptible for this disease.</p><p><strong>Results: </strong>In this study, we phenotyped 1975 Belgian Blue cattle from more than 100 different groups on commercial beef farms for their psoroptic mange susceptibility. Substantial individual differences were observed within these management groups, with lesion extent differences up to ± 15%. Animal models showed that estimated heritabilities were low for lesion extent and severe lesion extent (0.07 and 0.09, respectively) and 0.12 for the number of mites. A genome wide association study for mange susceptibility revealed signals on BTA6, BTA11, BTA15 and BTA24. In these regions, candidate genes GBA3, RAG2, and TRAF6 were identified.</p><p><strong>Conclusions: </strong>Despite the challenges in phenotyping for psoroptic mange due to the timing of screening, the continuous evolution of lesions and different management conditions, we successfully conducted a study on the genetic susceptibility to psoroptic mange in Belgian Blue cattle. Our results clearly indicate that psoroptic mange is under polygenic control and the underlying candidate genes should be studied more thoroughly. This is the first study providing candidate genes for this complex disease. These results are already valuable for Belgian Blue breeding, however, further research is needed to unravel the architecture of this disease and to identify causal mutations.</p>","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"56 1","pages":"52"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227209/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic and genomic analysis of Belgian Blue's susceptibility for psoroptic mange.\",\"authors\":\"Roel Meyermans, Steven Janssens, Annelies Coussé, Susanne Tinel, Wim Gorssen, Fabrice Lepot, Xavier Hubin, Patrick Mayeres, Wim Veulemans, Nathalie De Wilde, Tom Druet, Michel Georges, Carole Charlier, Edwin Claerebout, Nadine Buys\",\"doi\":\"10.1186/s12711-024-00921-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Psoroptic mange, caused by Psoroptes ovis mites, is affecting Belgian Blue cattle's welfare and production potential. The Belgian Blue cattle-known for its high degree of muscling, low feed conversion ratio and high beef quality-is highly susceptible for this disease.</p><p><strong>Results: </strong>In this study, we phenotyped 1975 Belgian Blue cattle from more than 100 different groups on commercial beef farms for their psoroptic mange susceptibility. Substantial individual differences were observed within these management groups, with lesion extent differences up to ± 15%. Animal models showed that estimated heritabilities were low for lesion extent and severe lesion extent (0.07 and 0.09, respectively) and 0.12 for the number of mites. A genome wide association study for mange susceptibility revealed signals on BTA6, BTA11, BTA15 and BTA24. In these regions, candidate genes GBA3, RAG2, and TRAF6 were identified.</p><p><strong>Conclusions: </strong>Despite the challenges in phenotyping for psoroptic mange due to the timing of screening, the continuous evolution of lesions and different management conditions, we successfully conducted a study on the genetic susceptibility to psoroptic mange in Belgian Blue cattle. Our results clearly indicate that psoroptic mange is under polygenic control and the underlying candidate genes should be studied more thoroughly. This is the first study providing candidate genes for this complex disease. These results are already valuable for Belgian Blue breeding, however, further research is needed to unravel the architecture of this disease and to identify causal mutations.</p>\",\"PeriodicalId\":55120,\"journal\":{\"name\":\"Genetics Selection Evolution\",\"volume\":\"56 1\",\"pages\":\"52\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227209/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics Selection Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12711-024-00921-7\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00921-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Genetic and genomic analysis of Belgian Blue's susceptibility for psoroptic mange.
Background: Psoroptic mange, caused by Psoroptes ovis mites, is affecting Belgian Blue cattle's welfare and production potential. The Belgian Blue cattle-known for its high degree of muscling, low feed conversion ratio and high beef quality-is highly susceptible for this disease.
Results: In this study, we phenotyped 1975 Belgian Blue cattle from more than 100 different groups on commercial beef farms for their psoroptic mange susceptibility. Substantial individual differences were observed within these management groups, with lesion extent differences up to ± 15%. Animal models showed that estimated heritabilities were low for lesion extent and severe lesion extent (0.07 and 0.09, respectively) and 0.12 for the number of mites. A genome wide association study for mange susceptibility revealed signals on BTA6, BTA11, BTA15 and BTA24. In these regions, candidate genes GBA3, RAG2, and TRAF6 were identified.
Conclusions: Despite the challenges in phenotyping for psoroptic mange due to the timing of screening, the continuous evolution of lesions and different management conditions, we successfully conducted a study on the genetic susceptibility to psoroptic mange in Belgian Blue cattle. Our results clearly indicate that psoroptic mange is under polygenic control and the underlying candidate genes should be studied more thoroughly. This is the first study providing candidate genes for this complex disease. These results are already valuable for Belgian Blue breeding, however, further research is needed to unravel the architecture of this disease and to identify causal mutations.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.