{"title":"温室气体抵消信贷市场的纳什均衡","authors":"Liam Welsh , Sebastian Jaimungal","doi":"10.1016/j.jcomm.2024.100419","DOIUrl":null,"url":null,"abstract":"<div><p>One approach to reducing greenhouse gas (GHG) emissions is to incentivise carbon capturing and carbon reducing projects while simultaneously penalising excess GHG output. In this work, we present a novel market framework and characterise the optimal behaviour of GHG offset credit (OC) market participants in both single-player and two-player settings. The single player setting is posed as an optimal stopping and control problem, while the two-player setting is posed as optimal stopping and mixed-Nash equilibria problem. We demonstrate the importance of acting optimally using numerical solutions and Monte Carlo simulations and explore the differences between the homogeneous and heterogeneous players. In both settings, we find that market participants benefit from optimal OC trading and OC generation.</p></div>","PeriodicalId":45111,"journal":{"name":"Journal of Commodity Markets","volume":"35 ","pages":"Article 100419"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405851324000382/pdfft?md5=9ee3dcec23d33e3668b5de6e7d603887&pid=1-s2.0-S2405851324000382-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nash equilibria in greenhouse gas offset credit markets\",\"authors\":\"Liam Welsh , Sebastian Jaimungal\",\"doi\":\"10.1016/j.jcomm.2024.100419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One approach to reducing greenhouse gas (GHG) emissions is to incentivise carbon capturing and carbon reducing projects while simultaneously penalising excess GHG output. In this work, we present a novel market framework and characterise the optimal behaviour of GHG offset credit (OC) market participants in both single-player and two-player settings. The single player setting is posed as an optimal stopping and control problem, while the two-player setting is posed as optimal stopping and mixed-Nash equilibria problem. We demonstrate the importance of acting optimally using numerical solutions and Monte Carlo simulations and explore the differences between the homogeneous and heterogeneous players. In both settings, we find that market participants benefit from optimal OC trading and OC generation.</p></div>\",\"PeriodicalId\":45111,\"journal\":{\"name\":\"Journal of Commodity Markets\",\"volume\":\"35 \",\"pages\":\"Article 100419\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405851324000382/pdfft?md5=9ee3dcec23d33e3668b5de6e7d603887&pid=1-s2.0-S2405851324000382-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Commodity Markets\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405851324000382\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commodity Markets","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405851324000382","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Nash equilibria in greenhouse gas offset credit markets
One approach to reducing greenhouse gas (GHG) emissions is to incentivise carbon capturing and carbon reducing projects while simultaneously penalising excess GHG output. In this work, we present a novel market framework and characterise the optimal behaviour of GHG offset credit (OC) market participants in both single-player and two-player settings. The single player setting is posed as an optimal stopping and control problem, while the two-player setting is posed as optimal stopping and mixed-Nash equilibria problem. We demonstrate the importance of acting optimally using numerical solutions and Monte Carlo simulations and explore the differences between the homogeneous and heterogeneous players. In both settings, we find that market participants benefit from optimal OC trading and OC generation.
期刊介绍:
The purpose of the journal is also to stimulate international dialog among academics, industry participants, traders, investors, and policymakers with mutual interests in commodity markets. The mandate for the journal is to present ongoing work within commodity economics and finance. Topics can be related to financialization of commodity markets; pricing, hedging, and risk analysis of commodity derivatives; risk premia in commodity markets; real option analysis for commodity project investment and production; portfolio allocation including commodities; forecasting in commodity markets; corporate finance for commodity-exposed corporations; econometric/statistical analysis of commodity markets; organization of commodity markets; regulation of commodity markets; local and global commodity trading; and commodity supply chains. Commodity markets in this context are energy markets (including renewables), metal markets, mineral markets, agricultural markets, livestock and fish markets, markets for weather derivatives, emission markets, shipping markets, water, and related markets. This interdisciplinary and trans-disciplinary journal will cover all commodity markets and is thus relevant for a broad audience. Commodity markets are not only of academic interest but also highly relevant for many practitioners, including asset managers, industrial managers, investment bankers, risk managers, and also policymakers in governments, central banks, and supranational institutions.