Zehan Chen , Xiaoguang Li , Lin Liu , Tao Lin , Jiai Ning , Hui Yang , Shunpu Li , Hongyu An
{"title":"通过氢对梯度 CoPd 单层中的自旋轨道力矩和磁化切换进行外部操纵","authors":"Zehan Chen , Xiaoguang Li , Lin Liu , Tao Lin , Jiai Ning , Hui Yang , Shunpu Li , Hongyu An","doi":"10.1016/j.mtquan.2024.100008","DOIUrl":null,"url":null,"abstract":"<div><p>Recent findings regarding spin-orbit torques (SOTs) and current-induced magnetization switching in ferromagnetic (FM) single layers have attracted substantial attention due to the advantage of not necessitating the use of heavy-metal layers. Nevertheless, despite prior studies on the interior structural engineering of the SOT, the external techniques for manipulating the SOT in the FM single layer remains elusive, which is indispensable for the practical application of the single layer SOT devices. Here, we demonstrate external manipulation of SOT generation in CoPd single layer through the fabrication of CoPd film with a composition gradient, utilizing the H<sub>2</sub>-absorption property of Pd. It is found that the H-induced strain within the CoPd film plays a pivotal role in generating SOT. Meanwhile, we demonstrate that the critical current density required for the current-induced magnetization switching is markedly diminished with the application of H<sub>2</sub> due to the enhanced SOT generation and reduced perpendicular magnetic anisotropy energy. Our findings offer a straightforward method for external manipulation of single layer SOT devices, and hold the potential for applications of the spintronic devices.</p></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"3 ","pages":"Article 100008"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950257824000088/pdfft?md5=9f7c22a65b94171cc1ca8770c34bccfd&pid=1-s2.0-S2950257824000088-main.pdf","citationCount":"0","resultStr":"{\"title\":\"External manipulation of the spin-orbit torque and magnetization switching in gradient CoPd single layer via hydrogen\",\"authors\":\"Zehan Chen , Xiaoguang Li , Lin Liu , Tao Lin , Jiai Ning , Hui Yang , Shunpu Li , Hongyu An\",\"doi\":\"10.1016/j.mtquan.2024.100008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent findings regarding spin-orbit torques (SOTs) and current-induced magnetization switching in ferromagnetic (FM) single layers have attracted substantial attention due to the advantage of not necessitating the use of heavy-metal layers. Nevertheless, despite prior studies on the interior structural engineering of the SOT, the external techniques for manipulating the SOT in the FM single layer remains elusive, which is indispensable for the practical application of the single layer SOT devices. Here, we demonstrate external manipulation of SOT generation in CoPd single layer through the fabrication of CoPd film with a composition gradient, utilizing the H<sub>2</sub>-absorption property of Pd. It is found that the H-induced strain within the CoPd film plays a pivotal role in generating SOT. Meanwhile, we demonstrate that the critical current density required for the current-induced magnetization switching is markedly diminished with the application of H<sub>2</sub> due to the enhanced SOT generation and reduced perpendicular magnetic anisotropy energy. Our findings offer a straightforward method for external manipulation of single layer SOT devices, and hold the potential for applications of the spintronic devices.</p></div>\",\"PeriodicalId\":100894,\"journal\":{\"name\":\"Materials Today Quantum\",\"volume\":\"3 \",\"pages\":\"Article 100008\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950257824000088/pdfft?md5=9f7c22a65b94171cc1ca8770c34bccfd&pid=1-s2.0-S2950257824000088-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950257824000088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257824000088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最近有关铁磁(FM)单层中的自旋轨道力矩(SOT)和电流诱导磁化切换的研究结果引起了广泛关注,因为它们具有无需使用重金属层的优势。然而,尽管之前对 SOT 的内部结构工程进行了研究,但在调频单层中操纵 SOT 的外部技术仍然难以获得,而这对于单层 SOT 器件的实际应用是不可或缺的。在这里,我们利用钯的 H2-吸收特性,通过制造具有成分梯度的 CoPd 薄膜,展示了在 CoPd 单层中产生 SOT 的外部操控技术。研究发现,CoPd 膜内由 H 引起的应变在 SOT 的产生中起着关键作用。同时,我们还证明了电流诱导磁化切换所需的临界电流密度会随着 H2 的应用而显著降低,这是由于 SOT 的生成得到了增强,垂直磁各向异性能量降低所致。我们的研究结果为外部操纵单层 SOT 器件提供了一种直接的方法,并为自旋电子器件的应用提供了潜力。
External manipulation of the spin-orbit torque and magnetization switching in gradient CoPd single layer via hydrogen
Recent findings regarding spin-orbit torques (SOTs) and current-induced magnetization switching in ferromagnetic (FM) single layers have attracted substantial attention due to the advantage of not necessitating the use of heavy-metal layers. Nevertheless, despite prior studies on the interior structural engineering of the SOT, the external techniques for manipulating the SOT in the FM single layer remains elusive, which is indispensable for the practical application of the single layer SOT devices. Here, we demonstrate external manipulation of SOT generation in CoPd single layer through the fabrication of CoPd film with a composition gradient, utilizing the H2-absorption property of Pd. It is found that the H-induced strain within the CoPd film plays a pivotal role in generating SOT. Meanwhile, we demonstrate that the critical current density required for the current-induced magnetization switching is markedly diminished with the application of H2 due to the enhanced SOT generation and reduced perpendicular magnetic anisotropy energy. Our findings offer a straightforward method for external manipulation of single layer SOT devices, and hold the potential for applications of the spintronic devices.