考虑磁带粗糙度效应的故障电流条件下 HTS 变压器的热分析

IF 1.3 3区 物理与天体物理 Q4 PHYSICS, APPLIED Physica C-superconductivity and Its Applications Pub Date : 2024-07-03 DOI:10.1016/j.physc.2024.1354548
Mahdi Mahamed, Seyyedmeysam Seyyedbarzegar
{"title":"考虑磁带粗糙度效应的故障电流条件下 HTS 变压器的热分析","authors":"Mahdi Mahamed,&nbsp;Seyyedmeysam Seyyedbarzegar","doi":"10.1016/j.physc.2024.1354548","DOIUrl":null,"url":null,"abstract":"<div><p>High temperature superconducting (HTS) transformers have many advantages over conventional transformers in terms of volume, weight, and total efficiency. However, fault conditions limit the electro-thermal performance of an HTS transformer. Based on this, we investigate the thermal modeling of the HTS transformer in the fault-current state. For thermal modeling, heat transfer and parameters affecting it such as surface roughness and bubble behavior have been considered. At first, an accurate thermal model for a 10 kVA HTS transformer has been prepared. Experimental results show that the penalty of this model is about 2.5 K in the hot-spot point (HSP) temperature in fault-current conditions. In a second step, the impact of a roughness on the heat transfer and mass transfer rate in nucleated boiling mode is investigated. Results show that surface roughness decreases the HSP temperature by more than 10 K in fault-current conditions. These results have significant impacts on protecting HTS windings against quenching.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal analysis of the HTS transformer in the fault current condition considering the tape roughness effect\",\"authors\":\"Mahdi Mahamed,&nbsp;Seyyedmeysam Seyyedbarzegar\",\"doi\":\"10.1016/j.physc.2024.1354548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High temperature superconducting (HTS) transformers have many advantages over conventional transformers in terms of volume, weight, and total efficiency. However, fault conditions limit the electro-thermal performance of an HTS transformer. Based on this, we investigate the thermal modeling of the HTS transformer in the fault-current state. For thermal modeling, heat transfer and parameters affecting it such as surface roughness and bubble behavior have been considered. At first, an accurate thermal model for a 10 kVA HTS transformer has been prepared. Experimental results show that the penalty of this model is about 2.5 K in the hot-spot point (HSP) temperature in fault-current conditions. In a second step, the impact of a roughness on the heat transfer and mass transfer rate in nucleated boiling mode is investigated. Results show that surface roughness decreases the HSP temperature by more than 10 K in fault-current conditions. These results have significant impacts on protecting HTS windings against quenching.</p></div>\",\"PeriodicalId\":20159,\"journal\":{\"name\":\"Physica C-superconductivity and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica C-superconductivity and Its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921453424001126\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424001126","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

与传统变压器相比,高温超导(HTS)变压器在体积、重量和总效率方面具有许多优势。然而,故障条件限制了 HTS 变压器的电热性能。基于此,我们研究了故障电流状态下 HTS 变压器的热建模。在热建模中,我们考虑了热传导以及影响热传导的参数,如表面粗糙度和气泡行为。首先,为 10 kVA HTS 变压器建立了精确的热模型。实验结果表明,在故障电流条件下,该模型对热点(HSP)温度的影响约为 2.5 K。第二步,研究了粗糙度对成核沸腾模式下传热和传质速率的影响。结果表明,在故障电流条件下,表面粗糙度可将热斑点温度降低 10 K 以上。这些结果对保护 HTS 绕组免受淬火影响具有重大意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal analysis of the HTS transformer in the fault current condition considering the tape roughness effect

High temperature superconducting (HTS) transformers have many advantages over conventional transformers in terms of volume, weight, and total efficiency. However, fault conditions limit the electro-thermal performance of an HTS transformer. Based on this, we investigate the thermal modeling of the HTS transformer in the fault-current state. For thermal modeling, heat transfer and parameters affecting it such as surface roughness and bubble behavior have been considered. At first, an accurate thermal model for a 10 kVA HTS transformer has been prepared. Experimental results show that the penalty of this model is about 2.5 K in the hot-spot point (HSP) temperature in fault-current conditions. In a second step, the impact of a roughness on the heat transfer and mass transfer rate in nucleated boiling mode is investigated. Results show that surface roughness decreases the HSP temperature by more than 10 K in fault-current conditions. These results have significant impacts on protecting HTS windings against quenching.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
11.80%
发文量
102
审稿时长
66 days
期刊介绍: Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity. The main goal of the journal is to publish: 1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods. 2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance. 3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices. The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.
期刊最新文献
A planar mounted SQUID full-tensor module for magnetoenterogram denoising detection Comparative study on the impact of different E-J relations on the performance of resistive superconducting fault current limiters under high and low impedance faults in cryo-electric aircraft Calculation of AC loss using 2D homogenization method for HTS synchronous condenser rotor and validation Manufacture process and cabling optimization of Bi2212 CICC Design and test of a compact twisted stacked YBCO cable for fusion application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1