volGPT:利用大型语言模型对内存取证中的勒索软件进程进行分流评估

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Forensic Science International-Digital Investigation Pub Date : 2024-07-01 DOI:10.1016/j.fsidi.2024.301756
Dong Bin Oh , Donghyun Kim , Donghyun Kim , Huy Kang Kim
{"title":"volGPT:利用大型语言模型对内存取证中的勒索软件进程进行分流评估","authors":"Dong Bin Oh ,&nbsp;Donghyun Kim ,&nbsp;Donghyun Kim ,&nbsp;Huy Kang Kim","doi":"10.1016/j.fsidi.2024.301756","DOIUrl":null,"url":null,"abstract":"<div><p>In the face of the harm that ransomware can inflict upon users’ computers, the imperative to efficiently and accurately triage its processes within memory forensics becomes increasingly crucial. However, ransomware perpetrators employ sophisticated techniques, such as process masquerading, to evade detection and analysis. In response to these challenges, we propose a novel ransomware triage method leveraging a Large Language Model (LLM) in conjunction with the Volatility framework, the de-facto standard in memory forensics. We conducted experiments on memory dumps infected by five different ransomware families, utilizing LLM-based approaches. Through extensive experiments, our method named volGPT demonstrated high accuracy in identifying ransomware-related processes within memory dumps. Additionally, our approach exhibited greater efficiency and provided more comprehensive explanations during ransomware triage than other state-of-the-art methods.</p></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"49 ","pages":"Article 301756"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666281724000751/pdfft?md5=1146cd1fa02f1199396b49faab24db03&pid=1-s2.0-S2666281724000751-main.pdf","citationCount":"0","resultStr":"{\"title\":\"volGPT: Evaluation on triaging ransomware process in memory forensics with Large Language Model\",\"authors\":\"Dong Bin Oh ,&nbsp;Donghyun Kim ,&nbsp;Donghyun Kim ,&nbsp;Huy Kang Kim\",\"doi\":\"10.1016/j.fsidi.2024.301756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the face of the harm that ransomware can inflict upon users’ computers, the imperative to efficiently and accurately triage its processes within memory forensics becomes increasingly crucial. However, ransomware perpetrators employ sophisticated techniques, such as process masquerading, to evade detection and analysis. In response to these challenges, we propose a novel ransomware triage method leveraging a Large Language Model (LLM) in conjunction with the Volatility framework, the de-facto standard in memory forensics. We conducted experiments on memory dumps infected by five different ransomware families, utilizing LLM-based approaches. Through extensive experiments, our method named volGPT demonstrated high accuracy in identifying ransomware-related processes within memory dumps. Additionally, our approach exhibited greater efficiency and provided more comprehensive explanations during ransomware triage than other state-of-the-art methods.</p></div>\",\"PeriodicalId\":48481,\"journal\":{\"name\":\"Forensic Science International-Digital Investigation\",\"volume\":\"49 \",\"pages\":\"Article 301756\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666281724000751/pdfft?md5=1146cd1fa02f1199396b49faab24db03&pid=1-s2.0-S2666281724000751-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Digital Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666281724000751\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281724000751","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

面对勒索软件对用户计算机造成的危害,在内存取证中高效、准确地分流勒索软件进程变得越来越重要。然而,勒索软件的实施者采用了复杂的技术(如进程伪装)来逃避检测和分析。为了应对这些挑战,我们提出了一种新颖的勒索软件分流方法,该方法利用大语言模型(LLM),并结合内存取证领域的事实标准--Volatility 框架。我们利用基于 LLM 的方法对五种不同勒索软件家族感染的内存转储进行了实验。通过大量实验,我们名为 volGPT 的方法在识别内存转储中的勒索软件相关进程方面表现出了很高的准确性。此外,与其他最先进的方法相比,我们的方法在勒索软件分流过程中表现出更高的效率,并提供了更全面的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
volGPT: Evaluation on triaging ransomware process in memory forensics with Large Language Model

In the face of the harm that ransomware can inflict upon users’ computers, the imperative to efficiently and accurately triage its processes within memory forensics becomes increasingly crucial. However, ransomware perpetrators employ sophisticated techniques, such as process masquerading, to evade detection and analysis. In response to these challenges, we propose a novel ransomware triage method leveraging a Large Language Model (LLM) in conjunction with the Volatility framework, the de-facto standard in memory forensics. We conducted experiments on memory dumps infected by five different ransomware families, utilizing LLM-based approaches. Through extensive experiments, our method named volGPT demonstrated high accuracy in identifying ransomware-related processes within memory dumps. Additionally, our approach exhibited greater efficiency and provided more comprehensive explanations during ransomware triage than other state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
期刊最新文献
DFPulse: The 2024 digital forensic practitioner survey Commentary:- Can I use that tool? Temporal metadata analysis: A learning classifier system approach Uncertainty and error in location traces Competence in digital forensics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1