{"title":"德-卡斯特约作品的地平线之旅","authors":"Andreas Müller","doi":"10.1016/j.cagd.2024.102366","DOIUrl":null,"url":null,"abstract":"<div><p>Whilst Paul de Casteljau is now famous for his fundamental algorithm of curve and surface approximation, little is known about his other findings. This article offers an insight into his results in geometry, algebra and number theory.</p><p>Related to geometry, his classical algorithm is reviewed as an index reduction of a polar form. This idea is used to show de Casteljau's algebraic way of smoothing, which long went unnoticed. We will also see an analytic polar form and its use in finding the intersection of two curves. The article summarises unpublished material on metric geometry. It includes theoretical advances, e.g., the 14-point strophoid or a way to link Apollonian circles with confocal conics, and also practical applications such as a recurrence for conjugate mirrors in geometric optics. A view on regular polygons leads to an approximation of their diagonals by golden matrices, a generalisation of the golden ratio.</p><p>Relevant algebraic findings include matrix quaternions (and anti-quaternions) and their link with Lorentz' equations. De Casteljau generalised the Euclidean algorithm and developed an automated method for approximating the roots of a class of polynomial equations. His contributions to number theory not only include aspects on the sum of four squares as in quaternions, but also a view on a particular sum of three cubes. After a review of a complete quadrilateral in a heptagon and its angles, the paper concludes with a summary of de Casteljau's key achievements.</p><p>The article contains a comprehensive bibliography of de Casteljau's works, including previously unpublished material.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102366"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624001006/pdfft?md5=3258b55a89826636b158851c6197a7cf&pid=1-s2.0-S0167839624001006-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A tour d'horizon of de Casteljau's work\",\"authors\":\"Andreas Müller\",\"doi\":\"10.1016/j.cagd.2024.102366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Whilst Paul de Casteljau is now famous for his fundamental algorithm of curve and surface approximation, little is known about his other findings. This article offers an insight into his results in geometry, algebra and number theory.</p><p>Related to geometry, his classical algorithm is reviewed as an index reduction of a polar form. This idea is used to show de Casteljau's algebraic way of smoothing, which long went unnoticed. We will also see an analytic polar form and its use in finding the intersection of two curves. The article summarises unpublished material on metric geometry. It includes theoretical advances, e.g., the 14-point strophoid or a way to link Apollonian circles with confocal conics, and also practical applications such as a recurrence for conjugate mirrors in geometric optics. A view on regular polygons leads to an approximation of their diagonals by golden matrices, a generalisation of the golden ratio.</p><p>Relevant algebraic findings include matrix quaternions (and anti-quaternions) and their link with Lorentz' equations. De Casteljau generalised the Euclidean algorithm and developed an automated method for approximating the roots of a class of polynomial equations. His contributions to number theory not only include aspects on the sum of four squares as in quaternions, but also a view on a particular sum of three cubes. After a review of a complete quadrilateral in a heptagon and its angles, the paper concludes with a summary of de Casteljau's key achievements.</p><p>The article contains a comprehensive bibliography of de Casteljau's works, including previously unpublished material.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"113 \",\"pages\":\"Article 102366\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167839624001006/pdfft?md5=3258b55a89826636b158851c6197a7cf&pid=1-s2.0-S0167839624001006-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624001006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624001006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Whilst Paul de Casteljau is now famous for his fundamental algorithm of curve and surface approximation, little is known about his other findings. This article offers an insight into his results in geometry, algebra and number theory.
Related to geometry, his classical algorithm is reviewed as an index reduction of a polar form. This idea is used to show de Casteljau's algebraic way of smoothing, which long went unnoticed. We will also see an analytic polar form and its use in finding the intersection of two curves. The article summarises unpublished material on metric geometry. It includes theoretical advances, e.g., the 14-point strophoid or a way to link Apollonian circles with confocal conics, and also practical applications such as a recurrence for conjugate mirrors in geometric optics. A view on regular polygons leads to an approximation of their diagonals by golden matrices, a generalisation of the golden ratio.
Relevant algebraic findings include matrix quaternions (and anti-quaternions) and their link with Lorentz' equations. De Casteljau generalised the Euclidean algorithm and developed an automated method for approximating the roots of a class of polynomial equations. His contributions to number theory not only include aspects on the sum of four squares as in quaternions, but also a view on a particular sum of three cubes. After a review of a complete quadrilateral in a heptagon and its angles, the paper concludes with a summary of de Casteljau's key achievements.
The article contains a comprehensive bibliography of de Casteljau's works, including previously unpublished material.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.