José Luis Alonso , Carlos Bouthelier-Madre , Jesús Clemente-Gallardo , David Martínez-Crespo
{"title":"考奇超曲面上量子场论的几何风味。第二部分:量子化和演化方法","authors":"José Luis Alonso , Carlos Bouthelier-Madre , Jesús Clemente-Gallardo , David Martínez-Crespo","doi":"10.1016/j.geomphys.2024.105265","DOIUrl":null,"url":null,"abstract":"<div><p>In this series of papers we aim to provide a mathematically comprehensive framework to the Hamiltonian pictures of quantum field theory in curved spacetimes. Our final goal is to study the kinematics and the dynamics of the theory from the point of differential geometry in infinite dimensions. In this second part we use the tools of Gaussian analysis in infinite dimensional spaces introduced in the first part to describe rigorously the procedures of geometric quantization in the space of Cauchy data of a scalar theory. This leads us to discuss and establish relations between different pictures of QFT. We also apply these tools to describe the geometrization of the space of pure states of quantum field theory as a Kähler manifold. We use this to derive an evolution equation that preserves the geometric structure and avoid norm losses in the evolution. This leads us to a modification of the Schrödinger equation via a quantum connection that we discuss and exemplify in a simple case.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0393044024001669/pdfft?md5=19ec66718bd9ea2e35b773d4606f3913&pid=1-s2.0-S0393044024001669-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Geometric flavours of quantum field theory on a Cauchy hypersurface. Part II: Methods of quantization and evolution\",\"authors\":\"José Luis Alonso , Carlos Bouthelier-Madre , Jesús Clemente-Gallardo , David Martínez-Crespo\",\"doi\":\"10.1016/j.geomphys.2024.105265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this series of papers we aim to provide a mathematically comprehensive framework to the Hamiltonian pictures of quantum field theory in curved spacetimes. Our final goal is to study the kinematics and the dynamics of the theory from the point of differential geometry in infinite dimensions. In this second part we use the tools of Gaussian analysis in infinite dimensional spaces introduced in the first part to describe rigorously the procedures of geometric quantization in the space of Cauchy data of a scalar theory. This leads us to discuss and establish relations between different pictures of QFT. We also apply these tools to describe the geometrization of the space of pure states of quantum field theory as a Kähler manifold. We use this to derive an evolution equation that preserves the geometric structure and avoid norm losses in the evolution. This leads us to a modification of the Schrödinger equation via a quantum connection that we discuss and exemplify in a simple case.</p></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001669/pdfft?md5=19ec66718bd9ea2e35b773d4606f3913&pid=1-s2.0-S0393044024001669-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001669\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001669","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Geometric flavours of quantum field theory on a Cauchy hypersurface. Part II: Methods of quantization and evolution
In this series of papers we aim to provide a mathematically comprehensive framework to the Hamiltonian pictures of quantum field theory in curved spacetimes. Our final goal is to study the kinematics and the dynamics of the theory from the point of differential geometry in infinite dimensions. In this second part we use the tools of Gaussian analysis in infinite dimensional spaces introduced in the first part to describe rigorously the procedures of geometric quantization in the space of Cauchy data of a scalar theory. This leads us to discuss and establish relations between different pictures of QFT. We also apply these tools to describe the geometrization of the space of pure states of quantum field theory as a Kähler manifold. We use this to derive an evolution equation that preserves the geometric structure and avoid norm losses in the evolution. This leads us to a modification of the Schrödinger equation via a quantum connection that we discuss and exemplify in a simple case.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity