SingleCellGGM 可从单细胞转录组中识别基因表达程序,并促进通用细胞标签转移。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-07-15 Epub Date: 2024-07-05 DOI:10.1016/j.crmeth.2024.100813
Yupu Xu, Yuzhou Wang, Shisong Ma
{"title":"SingleCellGGM 可从单细胞转录组中识别基因表达程序,并促进通用细胞标签转移。","authors":"Yupu Xu, Yuzhou Wang, Shisong Ma","doi":"10.1016/j.crmeth.2024.100813","DOIUrl":null,"url":null,"abstract":"<p><p>Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294836/pdf/","citationCount":"0","resultStr":"{\"title\":\"SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer.\",\"authors\":\"Yupu Xu, Yuzhou Wang, Shisong Ma\",\"doi\":\"10.1016/j.crmeth.2024.100813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

单细胞转录组的基因共表达分析旨在确定基因之间的功能关系,但由于丢失值过高,这种分析具有挑战性。在这里,我们开发了一种单细胞图形高斯模型(SingleCellGGM)算法来进行单细胞基因共表达网络分析。当应用于小鼠单细胞数据集时,SingleCellGGM构建了网络,并从中发现了具有高度显著功能富集的基因共表达模块。我们将这些模块视为基因表达程序(GEP)。这些基因表达程序可直接对单个细胞进行细胞类型注释,而无需进行细胞聚类,它们富集了相应细胞功能所需的基因,有时富集水平超过 10 倍。GEPs在不同数据集之间保持一致,可在不同研究中实现通用的细胞类型标签转移。我们还为单细胞分析提出了一种通过 GEPs 平均的降维方法,提高了结果的可解释性。因此,SingleCellGGM 为分析单细胞转录组提供了独特的基于 GEP 的视角,并揭示了不同单细胞数据集共有的生物学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer.

Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1