{"title":"利用液相色谱-串联质谱法同时测定人体血清中的 17 种内源性类固醇激素,无需衍生处理。","authors":"Marija Gjorgoska, Tea Lanišnik Rižner","doi":"10.1016/j.jsbmb.2024.106578","DOIUrl":null,"url":null,"abstract":"<div><p>Mass spectrometric-based steroidomics is a valuable analytical approach that gives a comprehensive understanding of the interlinked steroid biosynthetic pathways. Here, we describe a rapid and versatile liquid chromatography-tandem mass spectrometry (LC-MS/MS) method designed to accurately quantify endogenous steroids in human serum. Sample preparation involved liquid-liquid extraction with methyl <em>tert</em>-butyl ether (MTBE) from 180 µL serum. The targeted steroids for quantification included androgens: dehydroepiandrosterone (DHEA), androstenedione (A4), testosterone (T), dihydrotestosterone (DHT), 11-oxyandrogens: 11β-hydroxy-androstenedione (11OHA4), 11-keto-androstenedione (11KA4), 11β-hydroxy-testosterone (11OHT), 11-keto-testosterone (11KT), progestogens: 17α-hydroxy-progesterone (17OHP4), progesterone (P4), 11β-hydroxy-progesterone (11OHP4), 11-keto-progesterone (11KP4), mineralocorticoids: aldosterone, corticosterone, and glucocorticoids: 11-deoxycortisol, cortisol, and cortisone. The lower limits of quantification (LLOQ) were 0.05 ng/mL for A4, T, 11KA4, P4, and cortisone, 0.1 ng/mL for DHT, 11OHA4, 11OHT, 11KT, 17OHP4, 11OHP4, 11KP4, corticosterone, aldosterone, 11-deoxycortisol, and cortisol, and 0.5 ng/mL for DHEA. Accuracy, precision, reproducibility, and recovery fell within acceptable limits for bioanalytical method validation. Using serum samples from 29 premenopausal women in different menstrual phases, we demonstrated the clinical utility of our method, which showed sufficient sensitivity to reliably quantify all targeted steroids at levels typically found in circulation, except for 11OHP4 and 11KP4.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":"243 ","pages":"Article 106578"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960076024001262/pdfft?md5=a15f7113d6a3339223b18fefec0227c0&pid=1-s2.0-S0960076024001262-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Simultaneous measurement of 17 endogenous steroid hormones in human serum by liquid chromatography-tandem mass spectrometry without derivatization\",\"authors\":\"Marija Gjorgoska, Tea Lanišnik Rižner\",\"doi\":\"10.1016/j.jsbmb.2024.106578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mass spectrometric-based steroidomics is a valuable analytical approach that gives a comprehensive understanding of the interlinked steroid biosynthetic pathways. Here, we describe a rapid and versatile liquid chromatography-tandem mass spectrometry (LC-MS/MS) method designed to accurately quantify endogenous steroids in human serum. Sample preparation involved liquid-liquid extraction with methyl <em>tert</em>-butyl ether (MTBE) from 180 µL serum. The targeted steroids for quantification included androgens: dehydroepiandrosterone (DHEA), androstenedione (A4), testosterone (T), dihydrotestosterone (DHT), 11-oxyandrogens: 11β-hydroxy-androstenedione (11OHA4), 11-keto-androstenedione (11KA4), 11β-hydroxy-testosterone (11OHT), 11-keto-testosterone (11KT), progestogens: 17α-hydroxy-progesterone (17OHP4), progesterone (P4), 11β-hydroxy-progesterone (11OHP4), 11-keto-progesterone (11KP4), mineralocorticoids: aldosterone, corticosterone, and glucocorticoids: 11-deoxycortisol, cortisol, and cortisone. The lower limits of quantification (LLOQ) were 0.05 ng/mL for A4, T, 11KA4, P4, and cortisone, 0.1 ng/mL for DHT, 11OHA4, 11OHT, 11KT, 17OHP4, 11OHP4, 11KP4, corticosterone, aldosterone, 11-deoxycortisol, and cortisol, and 0.5 ng/mL for DHEA. Accuracy, precision, reproducibility, and recovery fell within acceptable limits for bioanalytical method validation. Using serum samples from 29 premenopausal women in different menstrual phases, we demonstrated the clinical utility of our method, which showed sufficient sensitivity to reliably quantify all targeted steroids at levels typically found in circulation, except for 11OHP4 and 11KP4.</p></div>\",\"PeriodicalId\":51106,\"journal\":{\"name\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"volume\":\"243 \",\"pages\":\"Article 106578\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0960076024001262/pdfft?md5=a15f7113d6a3339223b18fefec0227c0&pid=1-s2.0-S0960076024001262-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960076024001262\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960076024001262","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Simultaneous measurement of 17 endogenous steroid hormones in human serum by liquid chromatography-tandem mass spectrometry without derivatization
Mass spectrometric-based steroidomics is a valuable analytical approach that gives a comprehensive understanding of the interlinked steroid biosynthetic pathways. Here, we describe a rapid and versatile liquid chromatography-tandem mass spectrometry (LC-MS/MS) method designed to accurately quantify endogenous steroids in human serum. Sample preparation involved liquid-liquid extraction with methyl tert-butyl ether (MTBE) from 180 µL serum. The targeted steroids for quantification included androgens: dehydroepiandrosterone (DHEA), androstenedione (A4), testosterone (T), dihydrotestosterone (DHT), 11-oxyandrogens: 11β-hydroxy-androstenedione (11OHA4), 11-keto-androstenedione (11KA4), 11β-hydroxy-testosterone (11OHT), 11-keto-testosterone (11KT), progestogens: 17α-hydroxy-progesterone (17OHP4), progesterone (P4), 11β-hydroxy-progesterone (11OHP4), 11-keto-progesterone (11KP4), mineralocorticoids: aldosterone, corticosterone, and glucocorticoids: 11-deoxycortisol, cortisol, and cortisone. The lower limits of quantification (LLOQ) were 0.05 ng/mL for A4, T, 11KA4, P4, and cortisone, 0.1 ng/mL for DHT, 11OHA4, 11OHT, 11KT, 17OHP4, 11OHP4, 11KP4, corticosterone, aldosterone, 11-deoxycortisol, and cortisol, and 0.5 ng/mL for DHEA. Accuracy, precision, reproducibility, and recovery fell within acceptable limits for bioanalytical method validation. Using serum samples from 29 premenopausal women in different menstrual phases, we demonstrated the clinical utility of our method, which showed sufficient sensitivity to reliably quantify all targeted steroids at levels typically found in circulation, except for 11OHP4 and 11KP4.
期刊介绍:
The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.