用于德国树种分类的哨兵-2 机器学习数据集

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth System Science Data Pub Date : 2024-07-04 DOI:10.5194/essd-2024-206
Maximilian Freudenberg, Sebastian Schnell, Paul Magdon
{"title":"用于德国树种分类的哨兵-2 机器学习数据集","authors":"Maximilian Freudenberg, Sebastian Schnell, Paul Magdon","doi":"10.5194/essd-2024-206","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> We present a machine learning dataset for tree species classification in Sentinel-2 satellite image time series of bottom of atmosphere reflectance. The dataset is based on the German national forest inventory of 2012, as well as analysis ready satellite imagery computed using the FORCE processing pipeline. From the national forest inventory data, we extracted the tree positions, filtered 387 775 trees in the upper canopy layer and automatically extracted the corresponding bottom of atmosphere reflectance time series from Sentinel-2 L2A images. These time series are labeled with the corresponding tree species, which allows pixel-wise classification tasks. Furthermore, we provide auxiliary information such as the approximate tree position, the year of possible disturbance events or the diameter at breast height. Temporally, the dataset spans the years from July 2015 to end of October 2022 with ca. 75.3 million data points for trees of 51 species and species groups, as well as 13.8 million observations for non-tree background. Spatially, it covers entire Germany. The dataset is available under following DOI (Freudenberg et al., 2024): https://doi.org/10.3220/DATA20240402122351-0","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"55 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sentinel-2 Machine Learning Dataset for Tree Species Classification in Germany\",\"authors\":\"Maximilian Freudenberg, Sebastian Schnell, Paul Magdon\",\"doi\":\"10.5194/essd-2024-206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> We present a machine learning dataset for tree species classification in Sentinel-2 satellite image time series of bottom of atmosphere reflectance. The dataset is based on the German national forest inventory of 2012, as well as analysis ready satellite imagery computed using the FORCE processing pipeline. From the national forest inventory data, we extracted the tree positions, filtered 387 775 trees in the upper canopy layer and automatically extracted the corresponding bottom of atmosphere reflectance time series from Sentinel-2 L2A images. These time series are labeled with the corresponding tree species, which allows pixel-wise classification tasks. Furthermore, we provide auxiliary information such as the approximate tree position, the year of possible disturbance events or the diameter at breast height. Temporally, the dataset spans the years from July 2015 to end of October 2022 with ca. 75.3 million data points for trees of 51 species and species groups, as well as 13.8 million observations for non-tree background. Spatially, it covers entire Germany. The dataset is available under following DOI (Freudenberg et al., 2024): https://doi.org/10.3220/DATA20240402122351-0\",\"PeriodicalId\":48747,\"journal\":{\"name\":\"Earth System Science Data\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-2024-206\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-206","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们介绍了一个机器学习数据集,用于在哨兵-2 卫星图像的大气底部反射率时间序列中进行树种分类。该数据集基于 2012 年德国国家森林资源清查以及使用 FORCE 处理管道计算的卫星图像分析。我们从国家森林资源清查数据中提取了树木位置,过滤了树冠上层的 387 775 棵树木,并从哨兵-2 L2A 图像中自动提取了相应的大气底部反射率时间序列。这些时间序列标注了相应的树种,可用于像素分类任务。此外,我们还提供了一些辅助信息,如树木的大致位置、可能发生干扰事件的年份或胸径。从时间上看,数据集的时间跨度为 2015 年 7 月至 2022 年 10 月底,包含 51 个树种和树种群的约 7530 万个数据点,以及非树木背景的 1380 万个观测点。在空间上,该数据集覆盖了整个德国。该数据集的 DOI 如下(Freudenberg 等人,2024 年): https://doi.org/10.3220/DATA20240402122351-0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Sentinel-2 Machine Learning Dataset for Tree Species Classification in Germany
Abstract. We present a machine learning dataset for tree species classification in Sentinel-2 satellite image time series of bottom of atmosphere reflectance. The dataset is based on the German national forest inventory of 2012, as well as analysis ready satellite imagery computed using the FORCE processing pipeline. From the national forest inventory data, we extracted the tree positions, filtered 387 775 trees in the upper canopy layer and automatically extracted the corresponding bottom of atmosphere reflectance time series from Sentinel-2 L2A images. These time series are labeled with the corresponding tree species, which allows pixel-wise classification tasks. Furthermore, we provide auxiliary information such as the approximate tree position, the year of possible disturbance events or the diameter at breast height. Temporally, the dataset spans the years from July 2015 to end of October 2022 with ca. 75.3 million data points for trees of 51 species and species groups, as well as 13.8 million observations for non-tree background. Spatially, it covers entire Germany. The dataset is available under following DOI (Freudenberg et al., 2024): https://doi.org/10.3220/DATA20240402122351-0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
期刊最新文献
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution SMOS-derived Antarctic thin sea ice thickness: data description and validation in the Weddell Sea Global Greenhouse Gas Reconciliation 2022 A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1