行动推理平台(ActionReasoningBench):推理有拉姆约束和无拉姆约束的行动

Divij Handa, Pavel Dolin, Shrinidhi Kumbhar, Chitta Baral, Tran Cao Son
{"title":"行动推理平台(ActionReasoningBench):推理有拉姆约束和无拉姆约束的行动","authors":"Divij Handa, Pavel Dolin, Shrinidhi Kumbhar, Chitta Baral, Tran Cao Son","doi":"arxiv-2406.04046","DOIUrl":null,"url":null,"abstract":"Reasoning about actions and change (RAC) has historically driven the\ndevelopment of many early AI challenges, such as the frame problem, and many AI\ndisciplines, including non-monotonic and commonsense reasoning. The role of RAC\nremains important even now, particularly for tasks involving dynamic\nenvironments, interactive scenarios, and commonsense reasoning. Despite the\nprogress of Large Language Models (LLMs) in various AI domains, their\nperformance on RAC is underexplored. To address this gap, we introduce a new\nbenchmark, ActionReasoningBench, encompassing 13 domains and rigorously\nevaluating LLMs across eight different areas of RAC. These include - Object\nTracking, Fluent Tracking, State Tracking, Action Executability, Effects of\nActions, Numerical RAC, Hallucination Detection, and Composite Questions.\nFurthermore, we also investigate the indirect effect of actions due to\nramification constraints for every domain. Finally, we evaluate our benchmark\nusing open-sourced and commercial state-of-the-art LLMs, including GPT-4o,\nGemini-1.0-Pro, Llama2-7b-chat, Llama2-13b-chat, Llama3-8b-instruct,\nGemma-2b-instruct, and Gemma-7b-instruct. Our findings indicate that these\nmodels face significant challenges across all categories included in our\nbenchmark.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ActionReasoningBench: Reasoning about Actions with and without Ramification Constraints\",\"authors\":\"Divij Handa, Pavel Dolin, Shrinidhi Kumbhar, Chitta Baral, Tran Cao Son\",\"doi\":\"arxiv-2406.04046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reasoning about actions and change (RAC) has historically driven the\\ndevelopment of many early AI challenges, such as the frame problem, and many AI\\ndisciplines, including non-monotonic and commonsense reasoning. The role of RAC\\nremains important even now, particularly for tasks involving dynamic\\nenvironments, interactive scenarios, and commonsense reasoning. Despite the\\nprogress of Large Language Models (LLMs) in various AI domains, their\\nperformance on RAC is underexplored. To address this gap, we introduce a new\\nbenchmark, ActionReasoningBench, encompassing 13 domains and rigorously\\nevaluating LLMs across eight different areas of RAC. These include - Object\\nTracking, Fluent Tracking, State Tracking, Action Executability, Effects of\\nActions, Numerical RAC, Hallucination Detection, and Composite Questions.\\nFurthermore, we also investigate the indirect effect of actions due to\\nramification constraints for every domain. Finally, we evaluate our benchmark\\nusing open-sourced and commercial state-of-the-art LLMs, including GPT-4o,\\nGemini-1.0-Pro, Llama2-7b-chat, Llama2-13b-chat, Llama3-8b-instruct,\\nGemma-2b-instruct, and Gemma-7b-instruct. Our findings indicate that these\\nmodels face significant challenges across all categories included in our\\nbenchmark.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.04046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.04046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

行动与变化推理(RAC)在历史上推动了许多早期人工智能挑战(如框架问题)和许多人工智能学科(包括非单调推理和常识推理)的发展。即使是现在,RAC 的作用依然重要,尤其是在涉及动态环境、交互场景和常识推理的任务中。尽管大语言模型(LLM)在各种人工智能领域取得了进展,但它们在 RAC 上的表现却未得到充分探索。为了填补这一空白,我们引入了一个新的基准--行动推理基准(ActionReasoningBench),涵盖 13 个领域,并对 RAC 的 8 个不同领域中的 LLM 进行了严格评估。这些领域包括:对象跟踪(ObjectTracking)、流体跟踪(Fluent Tracking)、状态跟踪(State Tracking)、动作可执行性(Action Executability)、动作效果(Effects ofActions)、数字 RAC、幻觉检测(Hallucination Detection)和复合问题(Composite Questions)。最后,我们使用开源和商业的最先进 LLM(包括 GPT-4o、Gemini-1.0-Pro、Llama2-7b-chat、Llama2-13b-chat、Llama3-8b-instruct、Gemma-2b-instruct 和 Gemma-7b-instruct)评估了我们的基准。我们的研究结果表明,这些模型在基准测试的所有类别中都面临重大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ActionReasoningBench: Reasoning about Actions with and without Ramification Constraints
Reasoning about actions and change (RAC) has historically driven the development of many early AI challenges, such as the frame problem, and many AI disciplines, including non-monotonic and commonsense reasoning. The role of RAC remains important even now, particularly for tasks involving dynamic environments, interactive scenarios, and commonsense reasoning. Despite the progress of Large Language Models (LLMs) in various AI domains, their performance on RAC is underexplored. To address this gap, we introduce a new benchmark, ActionReasoningBench, encompassing 13 domains and rigorously evaluating LLMs across eight different areas of RAC. These include - Object Tracking, Fluent Tracking, State Tracking, Action Executability, Effects of Actions, Numerical RAC, Hallucination Detection, and Composite Questions. Furthermore, we also investigate the indirect effect of actions due to ramification constraints for every domain. Finally, we evaluate our benchmark using open-sourced and commercial state-of-the-art LLMs, including GPT-4o, Gemini-1.0-Pro, Llama2-7b-chat, Llama2-13b-chat, Llama3-8b-instruct, Gemma-2b-instruct, and Gemma-7b-instruct. Our findings indicate that these models face significant challenges across all categories included in our benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Direct Sum Tests Complexity and algorithms for Swap median and relation to other consensus problems Journalists, Emotions, and the Introduction of Generative AI Chatbots: A Large-Scale Analysis of Tweets Before and After the Launch of ChatGPT Almost-catalytic Computation Fast Simulation of Cellular Automata by Self-Composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1