Joshua M Lawrence, Michael R Heath, Douglas C Speirs, Paul G Fernandes
{"title":"结构尺寸可能会影响石油平台周围的鱼类密度","authors":"Joshua M Lawrence, Michael R Heath, Douglas C Speirs, Paul G Fernandes","doi":"10.1093/icesjms/fsae083","DOIUrl":null,"url":null,"abstract":"Thousands of offshore oil and gas platforms have been installed worldwide and are known to act as artificial reefs. Many platforms are nearing the end of their operational lives and will soon require decommissioning, but uncertainty remains about the impacts of these structures, and their removal, on the environment. Fish aggregate at platforms, but little is known about the extent of these effects in the North Sea and the causes of variability in these associations. Here, an uncrewed surface vessel (USV) was used to collect fisheries acoustic data on distributions of schooling and non-schooling fish around six oil platforms, collecting data within tens of metres of four of the surveyed platforms. In areas with more platforms, more non-schooling fish were found, and the probability of detecting fish schools was higher. Interplatform variability was found in trends in non-schooling fish density with increasing distance from platform, but the relationship was found to be strongest and most negative at the larger platforms. These findings may influence future management decisions around the decommissioning of these platforms, particularly if some structure is to be left in place to maximize the potential benefits associated with these artificial reef effects.","PeriodicalId":51072,"journal":{"name":"ICES Journal of Marine Science","volume":"14 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure size may affect fish density around oil platforms\",\"authors\":\"Joshua M Lawrence, Michael R Heath, Douglas C Speirs, Paul G Fernandes\",\"doi\":\"10.1093/icesjms/fsae083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thousands of offshore oil and gas platforms have been installed worldwide and are known to act as artificial reefs. Many platforms are nearing the end of their operational lives and will soon require decommissioning, but uncertainty remains about the impacts of these structures, and their removal, on the environment. Fish aggregate at platforms, but little is known about the extent of these effects in the North Sea and the causes of variability in these associations. Here, an uncrewed surface vessel (USV) was used to collect fisheries acoustic data on distributions of schooling and non-schooling fish around six oil platforms, collecting data within tens of metres of four of the surveyed platforms. In areas with more platforms, more non-schooling fish were found, and the probability of detecting fish schools was higher. Interplatform variability was found in trends in non-schooling fish density with increasing distance from platform, but the relationship was found to be strongest and most negative at the larger platforms. These findings may influence future management decisions around the decommissioning of these platforms, particularly if some structure is to be left in place to maximize the potential benefits associated with these artificial reef effects.\",\"PeriodicalId\":51072,\"journal\":{\"name\":\"ICES Journal of Marine Science\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICES Journal of Marine Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/icesjms/fsae083\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICES Journal of Marine Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/icesjms/fsae083","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Structure size may affect fish density around oil platforms
Thousands of offshore oil and gas platforms have been installed worldwide and are known to act as artificial reefs. Many platforms are nearing the end of their operational lives and will soon require decommissioning, but uncertainty remains about the impacts of these structures, and their removal, on the environment. Fish aggregate at platforms, but little is known about the extent of these effects in the North Sea and the causes of variability in these associations. Here, an uncrewed surface vessel (USV) was used to collect fisheries acoustic data on distributions of schooling and non-schooling fish around six oil platforms, collecting data within tens of metres of four of the surveyed platforms. In areas with more platforms, more non-schooling fish were found, and the probability of detecting fish schools was higher. Interplatform variability was found in trends in non-schooling fish density with increasing distance from platform, but the relationship was found to be strongest and most negative at the larger platforms. These findings may influence future management decisions around the decommissioning of these platforms, particularly if some structure is to be left in place to maximize the potential benefits associated with these artificial reef effects.
期刊介绍:
The ICES Journal of Marine Science publishes original articles, opinion essays (“Food for Thought”), visions for the future (“Quo Vadimus”), and critical reviews that contribute to our scientific understanding of marine systems and the impact of human activities on them. The Journal also serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to the marine environment. Oceanography (e.g. productivity-determining processes), marine habitats, living resources, and related topics constitute the key elements of papers considered for publication. This includes economic, social, and public administration studies to the extent that they are directly related to management of the seas and are of general interest to marine scientists. Integrated studies that bridge gaps between traditional disciplines are particularly welcome.