{"title":"基于以原子为中心的全电子ab initio数值轨道模拟的晶体轨道重叠群及其在锂插层材料化学键分析中的应用","authors":"Izumi Takahara, Kiyou Shibata, Teruyasu Mizoguchi","doi":"10.1088/1361-651x/ad4c82","DOIUrl":null,"url":null,"abstract":"Crystal orbital overlap population (COOP) is one of the effective tools for chemical-bonding analysis, and thus it has been utilized in the materials development and characterization. In this study, we developed a code to perform the COOP-based chemical-bonding analysis based on the wave function obtained from a first principles all-electron calculation with numeric atom-centered orbitals. The chemical-bonding analysis using the developed code was demonstrated for F<sub>2</sub>, Si, CaC<sub>6</sub>, and metals including Ti and Nb. Furthermore, we applied the method to analyze the chemical-bonding changes associated with a Li intercalation in three representative layered materials: graphite, MoS<sub>2</sub>, and ZrNCl, because of their great industrial importance, particularly for the applications in battery and superconducting materials. The COOP analysis provided some insights for understanding the intercalation mechanism and the stability of the intercalated materials from a chemical-bonding viewpoint.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"56 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal orbital overlap population based on all-electron ab initio simulation with numeric atom-centered orbitals and its application to chemical-bonding analysis in Li-intercalated layered materials\",\"authors\":\"Izumi Takahara, Kiyou Shibata, Teruyasu Mizoguchi\",\"doi\":\"10.1088/1361-651x/ad4c82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crystal orbital overlap population (COOP) is one of the effective tools for chemical-bonding analysis, and thus it has been utilized in the materials development and characterization. In this study, we developed a code to perform the COOP-based chemical-bonding analysis based on the wave function obtained from a first principles all-electron calculation with numeric atom-centered orbitals. The chemical-bonding analysis using the developed code was demonstrated for F<sub>2</sub>, Si, CaC<sub>6</sub>, and metals including Ti and Nb. Furthermore, we applied the method to analyze the chemical-bonding changes associated with a Li intercalation in three representative layered materials: graphite, MoS<sub>2</sub>, and ZrNCl, because of their great industrial importance, particularly for the applications in battery and superconducting materials. The COOP analysis provided some insights for understanding the intercalation mechanism and the stability of the intercalated materials from a chemical-bonding viewpoint.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad4c82\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad4c82","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
晶体轨道重叠群(COOP)是化学键分析的有效工具之一,因此在材料开发和表征中得到了广泛应用。在本研究中,我们开发了一种代码,以第一原理全电子计算获得的波函数为基础,利用数值原子中心轨道进行基于 COOP 的化学键分析。使用开发的代码对 F2、Si、CaC6 以及包括 Ti 和 Nb 在内的金属进行了化学键分析。此外,由于石墨、MoS2 和 ZrNCl 这三种具有代表性的层状材料在工业上的重要性,特别是在电池和超导材料中的应用,我们应用该方法分析了与锂插层相关的化学键变化。COOP 分析为从化学键角度理解插层材料的插层机理和稳定性提供了一些启示。
Crystal orbital overlap population based on all-electron ab initio simulation with numeric atom-centered orbitals and its application to chemical-bonding analysis in Li-intercalated layered materials
Crystal orbital overlap population (COOP) is one of the effective tools for chemical-bonding analysis, and thus it has been utilized in the materials development and characterization. In this study, we developed a code to perform the COOP-based chemical-bonding analysis based on the wave function obtained from a first principles all-electron calculation with numeric atom-centered orbitals. The chemical-bonding analysis using the developed code was demonstrated for F2, Si, CaC6, and metals including Ti and Nb. Furthermore, we applied the method to analyze the chemical-bonding changes associated with a Li intercalation in three representative layered materials: graphite, MoS2, and ZrNCl, because of their great industrial importance, particularly for the applications in battery and superconducting materials. The COOP analysis provided some insights for understanding the intercalation mechanism and the stability of the intercalated materials from a chemical-bonding viewpoint.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.