Dennettia Tripetala 精油的化学成分、抗菌和治疗特性

IF 1.7 4区 化学 Q3 CHEMISTRY, ANALYTICAL Current Analytical Chemistry Pub Date : 2024-07-04 DOI:10.2174/0115734110313735240624074507
Ekandem Joachim J., Udourioh Godwin A., Obi Leonard K., Moses M. Solomon
{"title":"Dennettia Tripetala 精油的化学成分、抗菌和治疗特性","authors":"Ekandem Joachim J., Udourioh Godwin A., Obi Leonard K., Moses M. Solomon","doi":"10.2174/0115734110313735240624074507","DOIUrl":null,"url":null,"abstract":"Background: It is well-known that essential oils are a rich source of bioactive components and are traditionally used as one of the alternatives to conventional medicines for treating various diseases and symptoms. Like other natural products, they are safe but should be used with care since all substances have potential toxicity depending on the conditions of exposure, the dose, and the route of administration. Method: This manuscript studies the chemical composition and antimicrobial properties of essential oil derived from D. tripetala. The essential oil was extracted from fresh D. tripetala fruits using steam distillation and subsequently subjected to Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography with Flame Ionization detection (GC-FID) analyses. The antimicrobial potential of the essential oil was evaluated against a panel of microorganisms, namely Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger. Results: The GC-FID analysis unveiled a diverse array of compounds within the essential oil, with the notable constituents being linalool, benzyl nitrile, benzene (2-nitroethyl), bicyclo(4.2.0)octa1,3,5-triene, 1,3,7-Octatrien-5-yne, styrene, butylated hydroxytoluene, and Nerolidol 2. D. tripetala essential oil significantly inhibits the microbial activities of all the tested organisms. It exhibits inhibitory activity against Bacillus subtilis and Escherichia coli at a MIC value of 12.5%, Staphylococcus aureus, and Pseudomonas aeruginosa at a MIC value of 25%, Candida albicans at a MIC value of 50%, and Aspergillus niger at MIC value 25%. The strongest inhibition of the oil is against Klebsiella pneumoniae at a MIC value of 3.12%. Conclusion: This research posits that the ethnomedicinal value ascribed to the essential oil of D. tripetala can be attributed to the presence of the identified compounds, some of which are already recognized for their biological activities. The essential oil presents promising potential as a source of lead compounds for developing anti-infective drugs, particularly those targeted against Klebsiella pneumoniae","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"15 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Compositions, Antimicrobial and Therapeutic Properties of Essential Oils of Dennettia Tripetala\",\"authors\":\"Ekandem Joachim J., Udourioh Godwin A., Obi Leonard K., Moses M. Solomon\",\"doi\":\"10.2174/0115734110313735240624074507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: It is well-known that essential oils are a rich source of bioactive components and are traditionally used as one of the alternatives to conventional medicines for treating various diseases and symptoms. Like other natural products, they are safe but should be used with care since all substances have potential toxicity depending on the conditions of exposure, the dose, and the route of administration. Method: This manuscript studies the chemical composition and antimicrobial properties of essential oil derived from D. tripetala. The essential oil was extracted from fresh D. tripetala fruits using steam distillation and subsequently subjected to Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography with Flame Ionization detection (GC-FID) analyses. The antimicrobial potential of the essential oil was evaluated against a panel of microorganisms, namely Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger. Results: The GC-FID analysis unveiled a diverse array of compounds within the essential oil, with the notable constituents being linalool, benzyl nitrile, benzene (2-nitroethyl), bicyclo(4.2.0)octa1,3,5-triene, 1,3,7-Octatrien-5-yne, styrene, butylated hydroxytoluene, and Nerolidol 2. D. tripetala essential oil significantly inhibits the microbial activities of all the tested organisms. It exhibits inhibitory activity against Bacillus subtilis and Escherichia coli at a MIC value of 12.5%, Staphylococcus aureus, and Pseudomonas aeruginosa at a MIC value of 25%, Candida albicans at a MIC value of 50%, and Aspergillus niger at MIC value 25%. The strongest inhibition of the oil is against Klebsiella pneumoniae at a MIC value of 3.12%. Conclusion: This research posits that the ethnomedicinal value ascribed to the essential oil of D. tripetala can be attributed to the presence of the identified compounds, some of which are already recognized for their biological activities. The essential oil presents promising potential as a source of lead compounds for developing anti-infective drugs, particularly those targeted against Klebsiella pneumoniae\",\"PeriodicalId\":10742,\"journal\":{\"name\":\"Current Analytical Chemistry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734110313735240624074507\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110313735240624074507","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:众所周知,精油含有丰富的生物活性成分,传统上被用作治疗各种疾病和症状的传统药物替代品之一。与其他天然产品一样,精油是安全的,但在使用时应小心谨慎,因为所有物质都有潜在的毒性,这取决于接触的条件、剂量和给药途径。研究方法本手稿研究了从 D. tripetala 提取的精油的化学成分和抗菌特性。精油采用蒸汽蒸馏法从新鲜的三叶木果中提取,然后进行傅立叶变换红外光谱(FT-IR)和气相色谱-火焰离子化检测(GC-FID)分析。评估了精油对金黄色葡萄球菌、枯草杆菌、大肠杆菌、伤寒沙门氏菌、肺炎克雷伯菌、绿脓杆菌、白色念珠菌和黑曲霉等微生物的抗菌潜力。结果GC-FID 分析揭示了精油中的多种化合物,主要成分有芳樟醇、苄基腈、苯(2-硝基乙基)、双环(4.2.0)辛-1,3,5-三烯、1,3,7-辛三烯-5-炔、苯乙烯、丁基羟基甲苯和橙花叔醇 2。三叶草精油对所有受测微生物的活性都有明显的抑制作用。它对枯草杆菌和大肠杆菌的抑制活性为 MIC 值的 12.5%,对金黄色葡萄球菌和绿脓杆菌的抑制活性为 MIC 值的 25%,对白色念珠菌的抑制活性为 MIC 值的 50%,对黑曲霉的抑制活性为 MIC 值的 25%。该精油对肺炎克雷伯菌的抑制作用最强,其 MIC 值为 3.12%。结论这项研究认为,D. tripetala 精油的民族药用价值可归因于其中已确定的化合物,其中一些化合物的生物活性已得到认可。该精油有望成为开发抗感染药物的先导化合物来源,尤其是针对肺炎克雷伯氏菌的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical Compositions, Antimicrobial and Therapeutic Properties of Essential Oils of Dennettia Tripetala
Background: It is well-known that essential oils are a rich source of bioactive components and are traditionally used as one of the alternatives to conventional medicines for treating various diseases and symptoms. Like other natural products, they are safe but should be used with care since all substances have potential toxicity depending on the conditions of exposure, the dose, and the route of administration. Method: This manuscript studies the chemical composition and antimicrobial properties of essential oil derived from D. tripetala. The essential oil was extracted from fresh D. tripetala fruits using steam distillation and subsequently subjected to Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography with Flame Ionization detection (GC-FID) analyses. The antimicrobial potential of the essential oil was evaluated against a panel of microorganisms, namely Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger. Results: The GC-FID analysis unveiled a diverse array of compounds within the essential oil, with the notable constituents being linalool, benzyl nitrile, benzene (2-nitroethyl), bicyclo(4.2.0)octa1,3,5-triene, 1,3,7-Octatrien-5-yne, styrene, butylated hydroxytoluene, and Nerolidol 2. D. tripetala essential oil significantly inhibits the microbial activities of all the tested organisms. It exhibits inhibitory activity against Bacillus subtilis and Escherichia coli at a MIC value of 12.5%, Staphylococcus aureus, and Pseudomonas aeruginosa at a MIC value of 25%, Candida albicans at a MIC value of 50%, and Aspergillus niger at MIC value 25%. The strongest inhibition of the oil is against Klebsiella pneumoniae at a MIC value of 3.12%. Conclusion: This research posits that the ethnomedicinal value ascribed to the essential oil of D. tripetala can be attributed to the presence of the identified compounds, some of which are already recognized for their biological activities. The essential oil presents promising potential as a source of lead compounds for developing anti-infective drugs, particularly those targeted against Klebsiella pneumoniae
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Analytical Chemistry
Current Analytical Chemistry 化学-分析化学
CiteScore
4.10
自引率
0.00%
发文量
90
审稿时长
9 months
期刊介绍: Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.
期刊最新文献
Purification and Kinetics of Chlorogenic Acid from Eucommia ulmoides Oliver Leaves by Macroporous Resins Combined with First-Principles Calculation Research Progress in Starch-based Dye Adsorbents Electrochemical Behavior of an Anti-cancer Drug Erlotinib at Screen-Printed Electrode and its Analytical Application Polygonum hydropiper Leaves have More Medicinal Value than Stems: Based on Chemical Composition and Antioxidant Activity In silico Investigation and Molecular Docking Studies of Pyrazole Incorporated Thiadiazole Derivatives for Antimicrobial Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1