Ozge Sahin, Kiymet Deniz Yagcioglu, Yusuf Kagan Kadioglu, Aydin Gunes
{"title":"评估蛋壳中的生态纳米钙:对盐碱和硼毒性条件下莴苣钙营养和氧化应激的影响","authors":"Ozge Sahin, Kiymet Deniz Yagcioglu, Yusuf Kagan Kadioglu, Aydin Gunes","doi":"10.1007/s00344-024-11407-7","DOIUrl":null,"url":null,"abstract":"<p>Nano-fertilizers with higher efficacy compared to conventional fertilizers can provide advantage for plant cultivation in both productive and problematic soils. Therefore, this study aimed to determine the effect of nano-calcium (nano-Ca) on lettuce plants grown in saline-boron toxic soil. Nano-calcium fertilizer was prepared from eggshells. Functional and structural properties of nano-Ca was determined by scanning electron microscopy (SEM), x-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) before plant experiment. The treatments was; control, 40 mM NaCl and 20 mg kg<sup>−1</sup> B (NaCl + B), and 40 mM NaCl and 20 mg kg<sup>−1</sup> B with 4 mM Nano-Ca (NaCl + B + nano-Ca). The nano-Ca significantly increased the dry weight and calcium (Ca) concentration of lettuce plants under saline-B toxic conditions. Although there was a decrease in the concentrations of sodium (Na), chloride (Cl), and boron (B) with nano-Ca treatment, it was not statistically significant. Salinity and boron toxicity lead to increased lipid peroxidation. In the present study, the production of malondialdehyde (MDA) as a marker for lipid peroxidation, along with a significant decrease in hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) concentration, was observed with the application of nano-Ca. There was no significant alteration in superoxide dismutase activity (SOD) observed in lettuce grown under saline and boron toxic conditions. However, catalase activity (CAT) increased with nano-Ca application, while the activity of ascorbate peroxidase (APX) decreased. The study results suggest that nano-Ca serves a protective function for lettuce plants cultivated under saline and boron toxic conditions.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":"74 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Ecological Nano-Calcium from Eggshells: Effects on Calcium Nutrition and Oxidative Stress in Lettuce Under Saline and Boron Toxicity\",\"authors\":\"Ozge Sahin, Kiymet Deniz Yagcioglu, Yusuf Kagan Kadioglu, Aydin Gunes\",\"doi\":\"10.1007/s00344-024-11407-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nano-fertilizers with higher efficacy compared to conventional fertilizers can provide advantage for plant cultivation in both productive and problematic soils. Therefore, this study aimed to determine the effect of nano-calcium (nano-Ca) on lettuce plants grown in saline-boron toxic soil. Nano-calcium fertilizer was prepared from eggshells. Functional and structural properties of nano-Ca was determined by scanning electron microscopy (SEM), x-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) before plant experiment. The treatments was; control, 40 mM NaCl and 20 mg kg<sup>−1</sup> B (NaCl + B), and 40 mM NaCl and 20 mg kg<sup>−1</sup> B with 4 mM Nano-Ca (NaCl + B + nano-Ca). The nano-Ca significantly increased the dry weight and calcium (Ca) concentration of lettuce plants under saline-B toxic conditions. Although there was a decrease in the concentrations of sodium (Na), chloride (Cl), and boron (B) with nano-Ca treatment, it was not statistically significant. Salinity and boron toxicity lead to increased lipid peroxidation. In the present study, the production of malondialdehyde (MDA) as a marker for lipid peroxidation, along with a significant decrease in hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) concentration, was observed with the application of nano-Ca. There was no significant alteration in superoxide dismutase activity (SOD) observed in lettuce grown under saline and boron toxic conditions. However, catalase activity (CAT) increased with nano-Ca application, while the activity of ascorbate peroxidase (APX) decreased. The study results suggest that nano-Ca serves a protective function for lettuce plants cultivated under saline and boron toxic conditions.</p>\",\"PeriodicalId\":16842,\"journal\":{\"name\":\"Journal of Plant Growth Regulation\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00344-024-11407-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11407-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Evaluating Ecological Nano-Calcium from Eggshells: Effects on Calcium Nutrition and Oxidative Stress in Lettuce Under Saline and Boron Toxicity
Nano-fertilizers with higher efficacy compared to conventional fertilizers can provide advantage for plant cultivation in both productive and problematic soils. Therefore, this study aimed to determine the effect of nano-calcium (nano-Ca) on lettuce plants grown in saline-boron toxic soil. Nano-calcium fertilizer was prepared from eggshells. Functional and structural properties of nano-Ca was determined by scanning electron microscopy (SEM), x-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) before plant experiment. The treatments was; control, 40 mM NaCl and 20 mg kg−1 B (NaCl + B), and 40 mM NaCl and 20 mg kg−1 B with 4 mM Nano-Ca (NaCl + B + nano-Ca). The nano-Ca significantly increased the dry weight and calcium (Ca) concentration of lettuce plants under saline-B toxic conditions. Although there was a decrease in the concentrations of sodium (Na), chloride (Cl), and boron (B) with nano-Ca treatment, it was not statistically significant. Salinity and boron toxicity lead to increased lipid peroxidation. In the present study, the production of malondialdehyde (MDA) as a marker for lipid peroxidation, along with a significant decrease in hydrogen peroxide (H2O2) concentration, was observed with the application of nano-Ca. There was no significant alteration in superoxide dismutase activity (SOD) observed in lettuce grown under saline and boron toxic conditions. However, catalase activity (CAT) increased with nano-Ca application, while the activity of ascorbate peroxidase (APX) decreased. The study results suggest that nano-Ca serves a protective function for lettuce plants cultivated under saline and boron toxic conditions.
期刊介绍:
The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches.
The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress.
In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports.
The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.