{"title":"通过三维动能阿尔费文波和磁岛之间的非线性相互作用在日冕中产生湍流","authors":"Garima Patel, R Uma and R P Sharma","doi":"10.1088/1361-6587/ad5c9b","DOIUrl":null,"url":null,"abstract":"This study investigates the interaction between kinetic Alfvén waves (KAWs) and magnetic islands in solar corona region. KAWs and magnetic islands are believed to be one of the key players in the heating of the coronal plasma and particle acceleration. We have used the dynamical model for KAWs to simulate its propagation through magnetic islands. The equation is solved numerically by using the finite difference and pseudospectral technique for spatial and temporal variations. The simulation results have been studied and signatures of turbulent structures evolving with time have been observed. Turbulence plays a considerable role in tapping out magnetic energy to thermal energy. The plot of the energy spectrum as a function of wavenumber exhibits a power law behavior in the inertial range, characterized with an exponent around . Beyond this range, the spectrum becomes steeper. In order to gain a more thorough knowledge of the physical processes that underlie the development of localized structures and to estimate the current sheet scale sizes, a semi-analytically model is also performed. The results indicate that the size of localized structures are comparable to ion gyro-radius, and different intensities of KAW further modify this length scale formed at different times. The purpose of the study is to acquire an understanding of the KAW propagation in magnetic islands and the way it contributes to the formation of turbulence and energy release in the solar corona. A comparative aspect of the non-linear interaction of 3D KAW with magnetic island and null point is also presented which shows that non-linear interaction of 3D KAW with null point, leads to rapid disorganization of the magnetic field and the creation of localized structures.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"29 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence generation in the solar corona through nonlinear interaction between 3D kinetic Alfvén wave and magnetic islands\",\"authors\":\"Garima Patel, R Uma and R P Sharma\",\"doi\":\"10.1088/1361-6587/ad5c9b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the interaction between kinetic Alfvén waves (KAWs) and magnetic islands in solar corona region. KAWs and magnetic islands are believed to be one of the key players in the heating of the coronal plasma and particle acceleration. We have used the dynamical model for KAWs to simulate its propagation through magnetic islands. The equation is solved numerically by using the finite difference and pseudospectral technique for spatial and temporal variations. The simulation results have been studied and signatures of turbulent structures evolving with time have been observed. Turbulence plays a considerable role in tapping out magnetic energy to thermal energy. The plot of the energy spectrum as a function of wavenumber exhibits a power law behavior in the inertial range, characterized with an exponent around . Beyond this range, the spectrum becomes steeper. In order to gain a more thorough knowledge of the physical processes that underlie the development of localized structures and to estimate the current sheet scale sizes, a semi-analytically model is also performed. The results indicate that the size of localized structures are comparable to ion gyro-radius, and different intensities of KAW further modify this length scale formed at different times. The purpose of the study is to acquire an understanding of the KAW propagation in magnetic islands and the way it contributes to the formation of turbulence and energy release in the solar corona. A comparative aspect of the non-linear interaction of 3D KAW with magnetic island and null point is also presented which shows that non-linear interaction of 3D KAW with null point, leads to rapid disorganization of the magnetic field and the creation of localized structures.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad5c9b\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad5c9b","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Turbulence generation in the solar corona through nonlinear interaction between 3D kinetic Alfvén wave and magnetic islands
This study investigates the interaction between kinetic Alfvén waves (KAWs) and magnetic islands in solar corona region. KAWs and magnetic islands are believed to be one of the key players in the heating of the coronal plasma and particle acceleration. We have used the dynamical model for KAWs to simulate its propagation through magnetic islands. The equation is solved numerically by using the finite difference and pseudospectral technique for spatial and temporal variations. The simulation results have been studied and signatures of turbulent structures evolving with time have been observed. Turbulence plays a considerable role in tapping out magnetic energy to thermal energy. The plot of the energy spectrum as a function of wavenumber exhibits a power law behavior in the inertial range, characterized with an exponent around . Beyond this range, the spectrum becomes steeper. In order to gain a more thorough knowledge of the physical processes that underlie the development of localized structures and to estimate the current sheet scale sizes, a semi-analytically model is also performed. The results indicate that the size of localized structures are comparable to ion gyro-radius, and different intensities of KAW further modify this length scale formed at different times. The purpose of the study is to acquire an understanding of the KAW propagation in magnetic islands and the way it contributes to the formation of turbulence and energy release in the solar corona. A comparative aspect of the non-linear interaction of 3D KAW with magnetic island and null point is also presented which shows that non-linear interaction of 3D KAW with null point, leads to rapid disorganization of the magnetic field and the creation of localized structures.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.