从大型通用文件索引中自动检测科学政治学文本

Nina Smirnova
{"title":"从大型通用文件索引中自动检测科学政治学文本","authors":"Nina Smirnova","doi":"arxiv-2406.03067","DOIUrl":null,"url":null,"abstract":"This technical report outlines the filtering approach applied to the\ncollection of the Bielefeld Academic Search Engine (BASE) data to extract\narticles from the political science domain. We combined hard and soft filters\nto address entries with different available metadata, e.g. title, abstract or\nkeywords. The hard filter is a weighted keyword-based filter approach. The soft\nfilter uses a multilingual BERT-based classification model, trained to detect\nscientific articles from the political science domain. We evaluated both\napproaches using an annotated dataset, consisting of scientific articles from\ndifferent scientific domains. The weighted keyword-based approach achieved the\nhighest total accuracy of 0.88. The multilingual BERT-based classification\nmodel was fine-tuned using a dataset of 14,178 abstracts from scientific\narticles and reached the highest total accuracy of 0.98.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatically detecting scientific political science texts from a large general document index\",\"authors\":\"Nina Smirnova\",\"doi\":\"arxiv-2406.03067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This technical report outlines the filtering approach applied to the\\ncollection of the Bielefeld Academic Search Engine (BASE) data to extract\\narticles from the political science domain. We combined hard and soft filters\\nto address entries with different available metadata, e.g. title, abstract or\\nkeywords. The hard filter is a weighted keyword-based filter approach. The soft\\nfilter uses a multilingual BERT-based classification model, trained to detect\\nscientific articles from the political science domain. We evaluated both\\napproaches using an annotated dataset, consisting of scientific articles from\\ndifferent scientific domains. The weighted keyword-based approach achieved the\\nhighest total accuracy of 0.88. The multilingual BERT-based classification\\nmodel was fine-tuned using a dataset of 14,178 abstracts from scientific\\narticles and reached the highest total accuracy of 0.98.\",\"PeriodicalId\":501285,\"journal\":{\"name\":\"arXiv - CS - Digital Libraries\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.03067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.03067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本技术报告概述了应用于比勒费尔德学术搜索引擎(BASE)数据收集的过滤方法,以提取政治学领域的文章。我们将硬过滤和软过滤相结合,以处理具有不同可用元数据(如标题、摘要或关键词)的条目。硬过滤是一种基于关键词的加权过滤方法。软过滤器使用基于 BERT 的多语言分类模型,该模型经过训练,可检测政治科学领域的科学文章。我们使用一个由不同科学领域的科学文章组成的注释数据集对这两种方法进行了评估。基于加权关键词的方法的总准确率最高,达到了 0.88。基于多语种 BERT 的分类模型在一个包含 14,178 篇科学文章摘要的数据集上进行了微调,总准确率达到了最高的 0.98。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatically detecting scientific political science texts from a large general document index
This technical report outlines the filtering approach applied to the collection of the Bielefeld Academic Search Engine (BASE) data to extract articles from the political science domain. We combined hard and soft filters to address entries with different available metadata, e.g. title, abstract or keywords. The hard filter is a weighted keyword-based filter approach. The soft filter uses a multilingual BERT-based classification model, trained to detect scientific articles from the political science domain. We evaluated both approaches using an annotated dataset, consisting of scientific articles from different scientific domains. The weighted keyword-based approach achieved the highest total accuracy of 0.88. The multilingual BERT-based classification model was fine-tuned using a dataset of 14,178 abstracts from scientific articles and reached the highest total accuracy of 0.98.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publishing Instincts: An Exploration-Exploitation Framework for Studying Academic Publishing Behavior and "Home Venues" Research Citations Building Trust in Wikipedia Evaluating the Linguistic Coverage of OpenAlex: An Assessment of Metadata Accuracy and Completeness Towards understanding evolution of science through language model series Ensuring Adherence to Standards in Experiment-Related Metadata Entered Via Spreadsheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1