M. Yu. Arshinov, B. D. Belan, D. K. Davydov, D. V. Simonenkov, A. V. Fofonov
{"title":"西西伯利亚西部淡水系统的二氧化碳排放量","authors":"M. Yu. Arshinov, B. D. Belan, D. K. Davydov, D. V. Simonenkov, A. V. Fofonov","doi":"10.1134/S1024856024700386","DOIUrl":null,"url":null,"abstract":"<p>One of the possible sources of carbon dioxide emission into the atmosphere can be river ecosystems. The paper presents the results of measuring CO<sub>2</sub> fluxes from the surface of several rivers and lakes in Tomsk Region. In the experimental period, average carbon dioxide fluxes were 143.7 ± 21.7 (August 13–14, 2023), 53.3 ± 21.2 (August 19), and 80.4 ± 59.9 mgC m<sup>−2</sup> h<sup>−1</sup> for the Ob River; 66.1 ± 17.3 mgC m<sup>−2</sup> h<sup>−1</sup> for the Ket River; 33.3 ± 17.3 mgC m<sup>−2</sup> h<sup>−1</sup> for the swamp Karasevoye Lake, 50.2 ± 23.0 mgC m<sup>−2</sup> h<sup>−1</sup> for the Suiga River, and 81.9 ± 11.5 mgC m<sup>−2</sup> h<sup>−1</sup> for the Iksa River. The flux magnitudes significantly depended not only on the object of the study, but also on hydrometeorological conditions.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Dioxide Emissions from Freshwater Systems in Western Siberia\",\"authors\":\"M. Yu. Arshinov, B. D. Belan, D. K. Davydov, D. V. Simonenkov, A. V. Fofonov\",\"doi\":\"10.1134/S1024856024700386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the possible sources of carbon dioxide emission into the atmosphere can be river ecosystems. The paper presents the results of measuring CO<sub>2</sub> fluxes from the surface of several rivers and lakes in Tomsk Region. In the experimental period, average carbon dioxide fluxes were 143.7 ± 21.7 (August 13–14, 2023), 53.3 ± 21.2 (August 19), and 80.4 ± 59.9 mgC m<sup>−2</sup> h<sup>−1</sup> for the Ob River; 66.1 ± 17.3 mgC m<sup>−2</sup> h<sup>−1</sup> for the Ket River; 33.3 ± 17.3 mgC m<sup>−2</sup> h<sup>−1</sup> for the swamp Karasevoye Lake, 50.2 ± 23.0 mgC m<sup>−2</sup> h<sup>−1</sup> for the Suiga River, and 81.9 ± 11.5 mgC m<sup>−2</sup> h<sup>−1</sup> for the Iksa River. The flux magnitudes significantly depended not only on the object of the study, but also on hydrometeorological conditions.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856024700386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Carbon Dioxide Emissions from Freshwater Systems in Western Siberia
One of the possible sources of carbon dioxide emission into the atmosphere can be river ecosystems. The paper presents the results of measuring CO2 fluxes from the surface of several rivers and lakes in Tomsk Region. In the experimental period, average carbon dioxide fluxes were 143.7 ± 21.7 (August 13–14, 2023), 53.3 ± 21.2 (August 19), and 80.4 ± 59.9 mgC m−2 h−1 for the Ob River; 66.1 ± 17.3 mgC m−2 h−1 for the Ket River; 33.3 ± 17.3 mgC m−2 h−1 for the swamp Karasevoye Lake, 50.2 ± 23.0 mgC m−2 h−1 for the Suiga River, and 81.9 ± 11.5 mgC m−2 h−1 for the Iksa River. The flux magnitudes significantly depended not only on the object of the study, but also on hydrometeorological conditions.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.