{"title":"利用修正耦合应力理论下的 DPL 模型对压电热弹性纳米梁谐振器进行热弹性阻尼分析","authors":"Anjali Srivastava, Santwana Mukhopadhyay","doi":"10.1007/s00033-024-02275-y","DOIUrl":null,"url":null,"abstract":"<p>The current work investigates the transverse vibration of a piezothermoelastic (PTE) nanobeam in the frame of dual-phase-lag thermoelasticity theory. Closed-form analytical expression for the thermoelastic damping (TED) in terms of quality factor for a homogeneous transversely isotropic PTE beam is derived by using Euler–Bernoulli beam theory and complex frequency approach. The size effect of the nanostructured beam is tackled by applying modified couple stress theory (MCST). Detailed analysis on damping of vibration owing to thermal fluctuations and electric potential in the present context under three sets of boundary conditions is attempted to investigate the influences of two-phase-lag parameters, piezoelectric parameter, thermal effect and size-dependent behaviour on energy dissipation caused by TED in PTE beam resonators. Analytical results are illustrated with the help of graphical plots on numerical findings for lead zirconate titanate (PZT-5A) PTE material. The investigation brings out some significant key findings and observations in view of the present heat conduction model.\n</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelastic damping analysis for a piezothermoelastic nanobeam resonator using DPL model under modified couple stress theory\",\"authors\":\"Anjali Srivastava, Santwana Mukhopadhyay\",\"doi\":\"10.1007/s00033-024-02275-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current work investigates the transverse vibration of a piezothermoelastic (PTE) nanobeam in the frame of dual-phase-lag thermoelasticity theory. Closed-form analytical expression for the thermoelastic damping (TED) in terms of quality factor for a homogeneous transversely isotropic PTE beam is derived by using Euler–Bernoulli beam theory and complex frequency approach. The size effect of the nanostructured beam is tackled by applying modified couple stress theory (MCST). Detailed analysis on damping of vibration owing to thermal fluctuations and electric potential in the present context under three sets of boundary conditions is attempted to investigate the influences of two-phase-lag parameters, piezoelectric parameter, thermal effect and size-dependent behaviour on energy dissipation caused by TED in PTE beam resonators. Analytical results are illustrated with the help of graphical plots on numerical findings for lead zirconate titanate (PZT-5A) PTE material. The investigation brings out some significant key findings and observations in view of the present heat conduction model.\\n</p>\",\"PeriodicalId\":501481,\"journal\":{\"name\":\"Zeitschrift für angewandte Mathematik und Physik\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für angewandte Mathematik und Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-024-02275-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02275-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermoelastic damping analysis for a piezothermoelastic nanobeam resonator using DPL model under modified couple stress theory
The current work investigates the transverse vibration of a piezothermoelastic (PTE) nanobeam in the frame of dual-phase-lag thermoelasticity theory. Closed-form analytical expression for the thermoelastic damping (TED) in terms of quality factor for a homogeneous transversely isotropic PTE beam is derived by using Euler–Bernoulli beam theory and complex frequency approach. The size effect of the nanostructured beam is tackled by applying modified couple stress theory (MCST). Detailed analysis on damping of vibration owing to thermal fluctuations and electric potential in the present context under three sets of boundary conditions is attempted to investigate the influences of two-phase-lag parameters, piezoelectric parameter, thermal effect and size-dependent behaviour on energy dissipation caused by TED in PTE beam resonators. Analytical results are illustrated with the help of graphical plots on numerical findings for lead zirconate titanate (PZT-5A) PTE material. The investigation brings out some significant key findings and observations in view of the present heat conduction model.