水滴撞击受热表面的声发射

IF 1 4区 工程技术 Q4 ENGINEERING, CHEMICAL Atomization and Sprays Pub Date : 2024-06-01 DOI:10.1615/atomizspr.2024051683
Volfango Bertola
{"title":"水滴撞击受热表面的声发射","authors":"Volfango Bertola","doi":"10.1615/atomizspr.2024051683","DOIUrl":null,"url":null,"abstract":"The sound generated by the impact of water drops on heated surfaces is studied experimentally, with the purpose to identify the sound features characteristic of the various impact morphologies. Whilst the sound of drops impacting on liquid surfaces has been investigated extensively, little attention was given to the sound of drops on solid, heated surfaces. The identification of sound features specific to different impact morphologies would enable the impact regime recognition without the need of high-speed imaging visual inspection, and can be used to train machine learning algorithms for automatic impact regime detection. Water drops were generated from a hypodermic needle suspended above a polished aluminium surface at temperatures between 100°C and 400°C, with impact Weber numbers ranging from 30 to 150. The sound generated upon impact was captured by a supercardioid condenser microphone, and compared with high-speed video recordings of the the impact. Results suggest different impact morphologies generate a sound with distinctive spectral features.","PeriodicalId":8637,"journal":{"name":"Atomization and Sprays","volume":"77 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic emission of water drops impacting on a heated surface\",\"authors\":\"Volfango Bertola\",\"doi\":\"10.1615/atomizspr.2024051683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sound generated by the impact of water drops on heated surfaces is studied experimentally, with the purpose to identify the sound features characteristic of the various impact morphologies. Whilst the sound of drops impacting on liquid surfaces has been investigated extensively, little attention was given to the sound of drops on solid, heated surfaces. The identification of sound features specific to different impact morphologies would enable the impact regime recognition without the need of high-speed imaging visual inspection, and can be used to train machine learning algorithms for automatic impact regime detection. Water drops were generated from a hypodermic needle suspended above a polished aluminium surface at temperatures between 100°C and 400°C, with impact Weber numbers ranging from 30 to 150. The sound generated upon impact was captured by a supercardioid condenser microphone, and compared with high-speed video recordings of the the impact. Results suggest different impact morphologies generate a sound with distinctive spectral features.\",\"PeriodicalId\":8637,\"journal\":{\"name\":\"Atomization and Sprays\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomization and Sprays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/atomizspr.2024051683\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomization and Sprays","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/atomizspr.2024051683","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

实验研究了水滴撞击受热表面所产生的声音,目的是确定各种撞击形态所特有的声音特征。虽然对水滴撞击液体表面的声音进行了广泛研究,但对水滴撞击固体加热表面的声音却很少关注。识别不同撞击形态所特有的声音特征,可以在不需要高速成像视觉检测的情况下识别撞击状态,并可用于训练自动撞击状态检测的机器学习算法。水滴由悬挂在抛光铝表面上方的皮下注射针头产生,温度在 100°C 至 400°C 之间,撞击韦伯数在 30 至 150 之间。冲击时产生的声音由超心形电容式麦克风捕获,并与冲击的高速视频记录进行比较。结果表明,不同的撞击形态产生的声音具有不同的频谱特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acoustic emission of water drops impacting on a heated surface
The sound generated by the impact of water drops on heated surfaces is studied experimentally, with the purpose to identify the sound features characteristic of the various impact morphologies. Whilst the sound of drops impacting on liquid surfaces has been investigated extensively, little attention was given to the sound of drops on solid, heated surfaces. The identification of sound features specific to different impact morphologies would enable the impact regime recognition without the need of high-speed imaging visual inspection, and can be used to train machine learning algorithms for automatic impact regime detection. Water drops were generated from a hypodermic needle suspended above a polished aluminium surface at temperatures between 100°C and 400°C, with impact Weber numbers ranging from 30 to 150. The sound generated upon impact was captured by a supercardioid condenser microphone, and compared with high-speed video recordings of the the impact. Results suggest different impact morphologies generate a sound with distinctive spectral features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atomization and Sprays
Atomization and Sprays 工程技术-材料科学:综合
CiteScore
2.10
自引率
16.70%
发文量
54
审稿时长
1.7 months
期刊介绍: The application and utilization of sprays is not new, and in modern society, it is extensive enough that almost every industry and household uses some form of sprays. What is new is an increasing scientific interest in atomization - the need to understand the physical structure of liquids under conditions of higher shear rates and interaction with gaseous flow. This need is being met with the publication of Atomization and Sprays, an authoritative, international journal presenting high quality research, applications, and review papers.
期刊最新文献
Application of an Optimized Mechanism of Primary Reference Fuel to Single Hole Sprays A Study of Impinging Spray G on Transient Thermal Loading and Fuel1 Film Deposition Derivation of a universal constant set in the Kelvin-Helmholtz Rayleigh-Taylor (KH-RT) breakup model for spray simulations of various fuels Numerical Investigation of Off-center Collision between Two Equal-sized Water Droplets On the role of trancritical evaporation in controlling the transition from two-phase to single-phase mixing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1