将图神经网络与深度强化学习相结合,促进计算力网络的资源分配

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Information Technology & Electronic Engineering Pub Date : 2024-06-07 DOI:10.1631/fitee.2300009
Xueying Han, Mingxi Xie, Ke Yu, Xiaohong Huang, Zongpeng Du, Huijuan Yao
{"title":"将图神经网络与深度强化学习相结合,促进计算力网络的资源分配","authors":"Xueying Han, Mingxi Xie, Ke Yu, Xiaohong Huang, Zongpeng Du, Huijuan Yao","doi":"10.1631/fitee.2300009","DOIUrl":null,"url":null,"abstract":"<p>Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements, the computing force network (CFN) has become a hot research subject. The primary CFN challenge is to leverage network resources and computing resources. Although recent advances in deep reinforcement learning (DRL) have brought significant improvement in network optimization, these methods still suffer from topology changes and fail to generalize for those topologies not seen in training. This paper proposes a graph neural network (GNN) based DRL framework to accommodate network traffic and computing resources jointly and efficiently. By taking advantage of the generalization capability in GNN, the proposed method can operate over variable topologies and obtain higher performance than the other DRL methods.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"50 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining graph neural network with deep reinforcement learning for resource allocation in computing force networks\",\"authors\":\"Xueying Han, Mingxi Xie, Ke Yu, Xiaohong Huang, Zongpeng Du, Huijuan Yao\",\"doi\":\"10.1631/fitee.2300009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements, the computing force network (CFN) has become a hot research subject. The primary CFN challenge is to leverage network resources and computing resources. Although recent advances in deep reinforcement learning (DRL) have brought significant improvement in network optimization, these methods still suffer from topology changes and fail to generalize for those topologies not seen in training. This paper proposes a graph neural network (GNN) based DRL framework to accommodate network traffic and computing resources jointly and efficiently. By taking advantage of the generalization capability in GNN, the proposed method can operate over variable topologies and obtain higher performance than the other DRL methods.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300009\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300009","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在对计算和网络性能有特殊要求的超低延迟和实时应用爆炸式增长的推动下,计算力网络(CFN)已成为一个热门研究课题。计算力网络面临的主要挑战是如何利用网络资源和计算资源。虽然深度强化学习(DRL)的最新进展为网络优化带来了显著改善,但这些方法仍然受到拓扑变化的影响,无法泛化训练中未见的拓扑。本文提出了一种基于图神经网络(GNN)的 DRL 框架,以共同高效地适应网络流量和计算资源。利用图神经网络的泛化能力,所提出的方法可以在多变的拓扑结构中运行,并获得比其他 DRL 方法更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining graph neural network with deep reinforcement learning for resource allocation in computing force networks

Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements, the computing force network (CFN) has become a hot research subject. The primary CFN challenge is to leverage network resources and computing resources. Although recent advances in deep reinforcement learning (DRL) have brought significant improvement in network optimization, these methods still suffer from topology changes and fail to generalize for those topologies not seen in training. This paper proposes a graph neural network (GNN) based DRL framework to accommodate network traffic and computing resources jointly and efficiently. By taking advantage of the generalization capability in GNN, the proposed method can operate over variable topologies and obtain higher performance than the other DRL methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
期刊最新文献
A novel overlapping minimization SMOTE algorithm for imbalanced classification A review on the developments and space applications of mid- and long-wavelength infrared detection technologies Detecting compromised accounts caused by phone number recycling on e-commerce platforms: taking Meituan as an example Flocking fragmentation formulation for a multi-robot system under multi-hop and lossy ad hoc networks Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1