{"title":"CsCuO 的结构、机械、电子和光学特性的第一原理研究","authors":"Jing Liu, Qi‐Jun Liu, Zheng‐Tang Liu, Zhi‐Xin Bai","doi":"10.1002/pssb.202400125","DOIUrl":null,"url":null,"abstract":"This study presents a comprehensive analysis of the orthorhombic CsCuO, focusing on its structural, electronic, mechanical, and optical properties, which uses the first‐principles plane wave pseudopotential technique and local density approximation methods based on density functional theory. The derived structural parameters closely match the previously reported experimental data. The calculated results show that CsCuO is mechanically stable and exhibits a certain toughness. Research on electronic properties shows that CsCuO is a direct‐bandgap semiconductor. Charge density and population analysis show that covalent bonds are formed between O and Cu. The optical property results show that CsCuO has good passability to incident light, indicating that CsCuO is an excellent transparent material. In the visible and infrared light regions, CsCuO has a low absorption coefficient, mainly manifested as ultraviolet absorption. Reflection is mainly distributed in the high‐energy region and does not exceed 25% in the visible light region. It can be used in fields that require less light reflection and the manufacture of medical ultraviolet disinfection equipment.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"11 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First‐Principles Studies of Structural, Mechanical, Electronic, and Optical Properties of CsCuO\",\"authors\":\"Jing Liu, Qi‐Jun Liu, Zheng‐Tang Liu, Zhi‐Xin Bai\",\"doi\":\"10.1002/pssb.202400125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a comprehensive analysis of the orthorhombic CsCuO, focusing on its structural, electronic, mechanical, and optical properties, which uses the first‐principles plane wave pseudopotential technique and local density approximation methods based on density functional theory. The derived structural parameters closely match the previously reported experimental data. The calculated results show that CsCuO is mechanically stable and exhibits a certain toughness. Research on electronic properties shows that CsCuO is a direct‐bandgap semiconductor. Charge density and population analysis show that covalent bonds are formed between O and Cu. The optical property results show that CsCuO has good passability to incident light, indicating that CsCuO is an excellent transparent material. In the visible and infrared light regions, CsCuO has a low absorption coefficient, mainly manifested as ultraviolet absorption. Reflection is mainly distributed in the high‐energy region and does not exceed 25% in the visible light region. It can be used in fields that require less light reflection and the manufacture of medical ultraviolet disinfection equipment.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400125\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400125","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
First‐Principles Studies of Structural, Mechanical, Electronic, and Optical Properties of CsCuO
This study presents a comprehensive analysis of the orthorhombic CsCuO, focusing on its structural, electronic, mechanical, and optical properties, which uses the first‐principles plane wave pseudopotential technique and local density approximation methods based on density functional theory. The derived structural parameters closely match the previously reported experimental data. The calculated results show that CsCuO is mechanically stable and exhibits a certain toughness. Research on electronic properties shows that CsCuO is a direct‐bandgap semiconductor. Charge density and population analysis show that covalent bonds are formed between O and Cu. The optical property results show that CsCuO has good passability to incident light, indicating that CsCuO is an excellent transparent material. In the visible and infrared light regions, CsCuO has a low absorption coefficient, mainly manifested as ultraviolet absorption. Reflection is mainly distributed in the high‐energy region and does not exceed 25% in the visible light region. It can be used in fields that require less light reflection and the manufacture of medical ultraviolet disinfection equipment.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.