推进异常检测:使用 LLM 进行非语义金融数据编码

Alexander BakumenkoClemson University, USA, Kateřina Hlaváčková-SchindlerUniversity of Vienna, Austria, Claudia PlantUniversity of Vienna, Austria, Nina C. HubigClemson University, USA
{"title":"推进异常检测:使用 LLM 进行非语义金融数据编码","authors":"Alexander BakumenkoClemson University, USA, Kateřina Hlaváčková-SchindlerUniversity of Vienna, Austria, Claudia PlantUniversity of Vienna, Austria, Nina C. HubigClemson University, USA","doi":"arxiv-2406.03614","DOIUrl":null,"url":null,"abstract":"Detecting anomalies in general ledger data is of utmost importance to ensure\ntrustworthiness of financial records. Financial audits increasingly rely on\nmachine learning (ML) algorithms to identify irregular or potentially\nfraudulent journal entries, each characterized by a varying number of\ntransactions. In machine learning, heterogeneity in feature dimensions adds\nsignificant complexity to data analysis. In this paper, we introduce a novel\napproach to anomaly detection in financial data using Large Language Models\n(LLMs) embeddings. To encode non-semantic categorical data from real-world\nfinancial records, we tested 3 pre-trained general purpose sentence-transformer\nmodels. For the downstream classification task, we implemented and evaluated 5\noptimized ML models including Logistic Regression, Random Forest, Gradient\nBoosting Machines, Support Vector Machines, and Neural Networks. Our\nexperiments demonstrate that LLMs contribute valuable information to anomaly\ndetection as our models outperform the baselines, in selected settings even by\na large margin. The findings further underscore the effectiveness of LLMs in\nenhancing anomaly detection in financial journal entries, particularly by\ntackling feature sparsity. We discuss a promising perspective on using LLM\nembeddings for non-semantic data in the financial context and beyond.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs\",\"authors\":\"Alexander BakumenkoClemson University, USA, Kateřina Hlaváčková-SchindlerUniversity of Vienna, Austria, Claudia PlantUniversity of Vienna, Austria, Nina C. HubigClemson University, USA\",\"doi\":\"arxiv-2406.03614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting anomalies in general ledger data is of utmost importance to ensure\\ntrustworthiness of financial records. Financial audits increasingly rely on\\nmachine learning (ML) algorithms to identify irregular or potentially\\nfraudulent journal entries, each characterized by a varying number of\\ntransactions. In machine learning, heterogeneity in feature dimensions adds\\nsignificant complexity to data analysis. In this paper, we introduce a novel\\napproach to anomaly detection in financial data using Large Language Models\\n(LLMs) embeddings. To encode non-semantic categorical data from real-world\\nfinancial records, we tested 3 pre-trained general purpose sentence-transformer\\nmodels. For the downstream classification task, we implemented and evaluated 5\\noptimized ML models including Logistic Regression, Random Forest, Gradient\\nBoosting Machines, Support Vector Machines, and Neural Networks. Our\\nexperiments demonstrate that LLMs contribute valuable information to anomaly\\ndetection as our models outperform the baselines, in selected settings even by\\na large margin. The findings further underscore the effectiveness of LLMs in\\nenhancing anomaly detection in financial journal entries, particularly by\\ntackling feature sparsity. We discuss a promising perspective on using LLM\\nembeddings for non-semantic data in the financial context and beyond.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.03614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.03614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

检测总账数据中的异常情况对于确保财务记录的可信度至关重要。财务审计越来越依赖于机器学习(ML)算法来识别不规则或潜在的欺诈性日记账分录,每种分录的特点是交易次数各不相同。在机器学习中,特征维度的异质性会大大增加数据分析的复杂性。在本文中,我们介绍了一种使用大型语言模型(LLMs)嵌入进行金融数据异常检测的新方法。为了对真实世界财务记录中的非语义分类数据进行编码,我们测试了 3 个预先训练好的通用句子转换模型。对于下游分类任务,我们实施并评估了 5 个优化的 ML 模型,包括逻辑回归、随机森林、梯度提升机、支持向量机和神经网络。实验证明,LLM 为异常检测提供了有价值的信息,因为我们的模型在某些设置下甚至比基线模型有更大的优势。研究结果进一步强调了 LLM 在增强金融日记账异常检测方面的有效性,尤其是在解决特征稀疏性方面。我们讨论了将 LLM 嵌入用于金融及其他领域的非语义数据的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs
Detecting anomalies in general ledger data is of utmost importance to ensure trustworthiness of financial records. Financial audits increasingly rely on machine learning (ML) algorithms to identify irregular or potentially fraudulent journal entries, each characterized by a varying number of transactions. In machine learning, heterogeneity in feature dimensions adds significant complexity to data analysis. In this paper, we introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings. To encode non-semantic categorical data from real-world financial records, we tested 3 pre-trained general purpose sentence-transformer models. For the downstream classification task, we implemented and evaluated 5 optimized ML models including Logistic Regression, Random Forest, Gradient Boosting Machines, Support Vector Machines, and Neural Networks. Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines, in selected settings even by a large margin. The findings further underscore the effectiveness of LLMs in enhancing anomaly detection in financial journal entries, particularly by tackling feature sparsity. We discuss a promising perspective on using LLM embeddings for non-semantic data in the financial context and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeFi Arbitrage in Hedged Liquidity Tokens Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity Claims processing and costs under capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1