Yi-Ming Liu, Hou-Dun Zeng, Yu-Liang Xin, Si-Ming Liu and Yi Zhang
{"title":"脉冲星风星云中高能电子分布的演变","authors":"Yi-Ming Liu, Hou-Dun Zeng, Yu-Liang Xin, Si-Ming Liu and Yi Zhang","doi":"10.1088/1674-4527/ad50b7","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the spectral energy distributions of 17 powerful (with a spin-down luminosity greater than 1035 erg s−1) young (with an age less than 15,000 yr) pulsar wind nebulae (PWNe) using a simple time-independent one-zone emission model. Our aim is to investigate correlations between model parameters and the ages of the corresponding PWNe, thereby revealing the evolution of high-energy electron distributions within PWNe. Our findings are as follows: (1) The electron distributions in PWNe can be characterized by a double power-law with a super-exponential cutoff. (2) As PWNe evolve, the high-energy end of the electron distribution spectrum becomes harder with the index decreasing from approximately 3.5 to 2.5, while the low-energy end spectrum index remains constant near 1.5. (3) There is no apparent correlation between the break energy or cutoff energy and the age of PWNe. (4) The average magnetic field within PWNe decreases with age, leading to a positive correlation between the energy loss timescale of electrons at the break energy or the high-energy cutoff, and the age of the PWN. (5) The total electron energy within PWNe remains constant near 2 × 1048 erg, while the total magnetic energy decreases with age.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"33 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of High-energy Electron Distribution in Pulsar Wind Nebulae\",\"authors\":\"Yi-Ming Liu, Hou-Dun Zeng, Yu-Liang Xin, Si-Ming Liu and Yi Zhang\",\"doi\":\"10.1088/1674-4527/ad50b7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the spectral energy distributions of 17 powerful (with a spin-down luminosity greater than 1035 erg s−1) young (with an age less than 15,000 yr) pulsar wind nebulae (PWNe) using a simple time-independent one-zone emission model. Our aim is to investigate correlations between model parameters and the ages of the corresponding PWNe, thereby revealing the evolution of high-energy electron distributions within PWNe. Our findings are as follows: (1) The electron distributions in PWNe can be characterized by a double power-law with a super-exponential cutoff. (2) As PWNe evolve, the high-energy end of the electron distribution spectrum becomes harder with the index decreasing from approximately 3.5 to 2.5, while the low-energy end spectrum index remains constant near 1.5. (3) There is no apparent correlation between the break energy or cutoff energy and the age of PWNe. (4) The average magnetic field within PWNe decreases with age, leading to a positive correlation between the energy loss timescale of electrons at the break energy or the high-energy cutoff, and the age of the PWN. (5) The total electron energy within PWNe remains constant near 2 × 1048 erg, while the total magnetic energy decreases with age.\",\"PeriodicalId\":54494,\"journal\":{\"name\":\"Research in Astronomy and Astrophysics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4527/ad50b7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad50b7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Evolution of High-energy Electron Distribution in Pulsar Wind Nebulae
In this paper, we analyze the spectral energy distributions of 17 powerful (with a spin-down luminosity greater than 1035 erg s−1) young (with an age less than 15,000 yr) pulsar wind nebulae (PWNe) using a simple time-independent one-zone emission model. Our aim is to investigate correlations between model parameters and the ages of the corresponding PWNe, thereby revealing the evolution of high-energy electron distributions within PWNe. Our findings are as follows: (1) The electron distributions in PWNe can be characterized by a double power-law with a super-exponential cutoff. (2) As PWNe evolve, the high-energy end of the electron distribution spectrum becomes harder with the index decreasing from approximately 3.5 to 2.5, while the low-energy end spectrum index remains constant near 1.5. (3) There is no apparent correlation between the break energy or cutoff energy and the age of PWNe. (4) The average magnetic field within PWNe decreases with age, leading to a positive correlation between the energy loss timescale of electrons at the break energy or the high-energy cutoff, and the age of the PWN. (5) The total electron energy within PWNe remains constant near 2 × 1048 erg, while the total magnetic energy decreases with age.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods