使用参数指南对超球面上的密度进行非参数估计

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Scandinavian Journal of Statistics Pub Date : 2024-07-03 DOI:10.1111/sjos.12737
María Alonso‐Pena, Gerda Claeskens, Irène Gijbels
{"title":"使用参数指南对超球面上的密度进行非参数估计","authors":"María Alonso‐Pena, Gerda Claeskens, Irène Gijbels","doi":"10.1111/sjos.12737","DOIUrl":null,"url":null,"abstract":"Hyperspherical kernel density estimators (KDE), which use a parametric distribution as a guide, are studied in this paper. The main benefit is that these estimators improve the bias of nonguided kernel density estimators when the parametric guiding distribution is not too far from the true density, while preserving the variance. When using a von Mises‐Fisher density as guide, the proposal performs as well as the classical KDE, even when the guiding model is incorrect, and far from the true distribution. This benefit is particular for the hyperspherical setting given its compact support, and is in contrast to similar methods for real valued data. Moreover, we deal with the important issue of data‐driven selection of the smoothing parameter. Simulations and real data examples illustrate the finite‐sample performance of the proposed method, also in comparison with other recently proposed estimation methods.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric estimation of densities on the hypersphere using a parametric guide\",\"authors\":\"María Alonso‐Pena, Gerda Claeskens, Irène Gijbels\",\"doi\":\"10.1111/sjos.12737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspherical kernel density estimators (KDE), which use a parametric distribution as a guide, are studied in this paper. The main benefit is that these estimators improve the bias of nonguided kernel density estimators when the parametric guiding distribution is not too far from the true density, while preserving the variance. When using a von Mises‐Fisher density as guide, the proposal performs as well as the classical KDE, even when the guiding model is incorrect, and far from the true distribution. This benefit is particular for the hyperspherical setting given its compact support, and is in contrast to similar methods for real valued data. Moreover, we deal with the important issue of data‐driven selection of the smoothing parameter. Simulations and real data examples illustrate the finite‐sample performance of the proposed method, also in comparison with other recently proposed estimation methods.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12737\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12737","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了使用参数分布作为导向的超球核密度估计器(KDE)。其主要优点是,当参数指导分布与真实密度相差不大时,这些估计器可以改善非指导核密度估计器的偏差,同时保留方差。当使用 von Mises-Fisher 密度作为指导时,即使指导模型不正确且与真实分布相差甚远,该提案的性能也不亚于经典的 KDE。考虑到超球面的紧凑支持,这种优势在超球面设置中尤为明显,这与用于实值数据的类似方法形成了鲜明对比。此外,我们还处理了数据驱动的平滑参数选择这一重要问题。模拟和真实数据实例说明了所提方法的有限样本性能,同时也与最近提出的其他估计方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric estimation of densities on the hypersphere using a parametric guide
Hyperspherical kernel density estimators (KDE), which use a parametric distribution as a guide, are studied in this paper. The main benefit is that these estimators improve the bias of nonguided kernel density estimators when the parametric guiding distribution is not too far from the true density, while preserving the variance. When using a von Mises‐Fisher density as guide, the proposal performs as well as the classical KDE, even when the guiding model is incorrect, and far from the true distribution. This benefit is particular for the hyperspherical setting given its compact support, and is in contrast to similar methods for real valued data. Moreover, we deal with the important issue of data‐driven selection of the smoothing parameter. Simulations and real data examples illustrate the finite‐sample performance of the proposed method, also in comparison with other recently proposed estimation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
期刊最新文献
Model‐based clustering in simple hypergraphs through a stochastic blockmodel Some approximations to the path formula for some nonlinear models Tobit models for count time series On some publications of Sir David Cox Looking back: Selected contributions by C. R. Rao to multivariate analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1