创新设计聚合物纹理上的碳点,用于高选择性检测氨基化合物

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-07-02 DOI:10.1016/j.carbon.2024.119414
Moorthy Maruthapandi, Arulappan Durairaj, Arumugam Saravanan, John H.T. Luong, Aristides Bakandritsos, Aharon Gedanken, Radek Zboril
{"title":"创新设计聚合物纹理上的碳点,用于高选择性检测氨基化合物","authors":"Moorthy Maruthapandi, Arulappan Durairaj, Arumugam Saravanan, John H.T. Luong, Aristides Bakandritsos, Aharon Gedanken, Radek Zboril","doi":"10.1016/j.carbon.2024.119414","DOIUrl":null,"url":null,"abstract":"<p>Volatile organic compounds (VOCs) are of growing concern due to their toxicity and environmental impact. Their facile detection is thus of a high importance but still challenging because they are unreactive and often present at very low concentrations. Developing sensing schemes for VOCs based on low-cost, sensitive, selective, and user-friendly methods is therefore crucial for environmental monitoring. To address these issues, we herein developed polymer supported carbon dots (CDs) by reacting tetraminobenzene with 2,4,6-trichlorophenyl oxalate using a simple reflux method. Owing to the selection of precursors, polymer supported fluorescent carbon dots (P-CDs) were grown decorating the synthesized polymeric spheres. The P-CDs composites were highly stable, and their fluorescence was drastically quenched by several VOC analytes (ethanolamine, diethanolamine, triethanolamine, and ammonia) due to the rich surface functional groups that could effectively and selectively interact with amines. The polymer component contributed to ascribing excellent photophysical and chemical stability, which is valuable particularly for sensing in complex matrices. As a result, the developed P-CDs exhibited superior properties when applied as VOC sensors, including high selectivity for several amines but not for other organic species, fast response, and very high stability, while offering a simple detection method, and minimum sample pre-treatment. The P-CD design has extended potential for diverse sensing applications, including, for instance, control of prohibited transport of chemicals and post-toxic analysis.</p>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The innovative design of carbon dots on polymer texture for highly selective detection of amino compounds\",\"authors\":\"Moorthy Maruthapandi, Arulappan Durairaj, Arumugam Saravanan, John H.T. Luong, Aristides Bakandritsos, Aharon Gedanken, Radek Zboril\",\"doi\":\"10.1016/j.carbon.2024.119414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Volatile organic compounds (VOCs) are of growing concern due to their toxicity and environmental impact. Their facile detection is thus of a high importance but still challenging because they are unreactive and often present at very low concentrations. Developing sensing schemes for VOCs based on low-cost, sensitive, selective, and user-friendly methods is therefore crucial for environmental monitoring. To address these issues, we herein developed polymer supported carbon dots (CDs) by reacting tetraminobenzene with 2,4,6-trichlorophenyl oxalate using a simple reflux method. Owing to the selection of precursors, polymer supported fluorescent carbon dots (P-CDs) were grown decorating the synthesized polymeric spheres. The P-CDs composites were highly stable, and their fluorescence was drastically quenched by several VOC analytes (ethanolamine, diethanolamine, triethanolamine, and ammonia) due to the rich surface functional groups that could effectively and selectively interact with amines. The polymer component contributed to ascribing excellent photophysical and chemical stability, which is valuable particularly for sensing in complex matrices. As a result, the developed P-CDs exhibited superior properties when applied as VOC sensors, including high selectivity for several amines but not for other organic species, fast response, and very high stability, while offering a simple detection method, and minimum sample pre-treatment. The P-CD design has extended potential for diverse sensing applications, including, for instance, control of prohibited transport of chemicals and post-toxic analysis.</p>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.carbon.2024.119414\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.carbon.2024.119414","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

挥发性有机化合物(VOC)因其毒性和对环境的影响而日益受到关注。因此,对它们进行简便的检测非常重要,但由于它们不具反应性,而且通常浓度很低,因此检测工作仍具有挑战性。因此,开发基于低成本、高灵敏度、高选择性和用户友好型方法的挥发性有机化合物传感方案对于环境监测至关重要。为了解决这些问题,我们采用简单的回流法,使四氨基苯与 2,4,6 三氯苯基草酸盐发生反应,从而开发出聚合物支撑碳点(CD)。由于前驱体的选择,聚合物支撑的荧光碳点(P-CDs)在合成的聚合物球体上生长装饰。P-CDs 复合材料具有很高的稳定性,其荧光被几种挥发性有机化合物分析物(乙醇胺、二乙醇胺、三乙醇胺和氨)大幅淬灭,这是由于其丰富的表面官能团能有效地、选择性地与胺相互作用。聚合物成分有助于赋予其出色的光物理和化学稳定性,这对于在复杂基质中进行传感尤为重要。因此,所开发的 P-CD 在用作挥发性有机化合物传感器时表现出了卓越的性能,包括对几种胺类的高选择性,而对其他有机物则无选择性;快速响应和极高的稳定性;同时检测方法简单,样品预处理量极低。P-CD 设计具有多种传感应用的扩展潜力,例如,包括控制化学品的违禁运输和毒后分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The innovative design of carbon dots on polymer texture for highly selective detection of amino compounds

Volatile organic compounds (VOCs) are of growing concern due to their toxicity and environmental impact. Their facile detection is thus of a high importance but still challenging because they are unreactive and often present at very low concentrations. Developing sensing schemes for VOCs based on low-cost, sensitive, selective, and user-friendly methods is therefore crucial for environmental monitoring. To address these issues, we herein developed polymer supported carbon dots (CDs) by reacting tetraminobenzene with 2,4,6-trichlorophenyl oxalate using a simple reflux method. Owing to the selection of precursors, polymer supported fluorescent carbon dots (P-CDs) were grown decorating the synthesized polymeric spheres. The P-CDs composites were highly stable, and their fluorescence was drastically quenched by several VOC analytes (ethanolamine, diethanolamine, triethanolamine, and ammonia) due to the rich surface functional groups that could effectively and selectively interact with amines. The polymer component contributed to ascribing excellent photophysical and chemical stability, which is valuable particularly for sensing in complex matrices. As a result, the developed P-CDs exhibited superior properties when applied as VOC sensors, including high selectivity for several amines but not for other organic species, fast response, and very high stability, while offering a simple detection method, and minimum sample pre-treatment. The P-CD design has extended potential for diverse sensing applications, including, for instance, control of prohibited transport of chemicals and post-toxic analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Biomimetic mineralization synergistic combustion activation to construct honeycomb porous carbon anode for sodium-ion batteries Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required Multi-scale structural design of multilayer magnetic composite materials for ultra-wideband microwave absorption Mechanically neutral and facile monitoring of thermoset matrices with ultrathin and highly porous carbon nanotube films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1