Teresa Klatzer, Paul Dobson, Yoann Altmann, Marcelo Pereyra, Jesus Maria Sanz-Serna, Konstantinos C. Zygalakis
{"title":"通过松弛近端点朗文采样加速贝叶斯成像","authors":"Teresa Klatzer, Paul Dobson, Yoann Altmann, Marcelo Pereyra, Jesus Maria Sanz-Serna, Konstantinos C. Zygalakis","doi":"10.1137/23m1594832","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1078-1117, June 2024. <br/> Abstract.This paper presents a new accelerated proximal Markov chain Monte Carlo methodology to perform Bayesian inference in imaging inverse problems with an underlying convex geometry. The proposed strategy takes the form of a stochastic relaxed proximal-point iteration that admits two complementary interpretations. For models that are smooth or regularized by Moreau–Yosida smoothing, the algorithm is equivalent to an implicit midpoint discretization of an overdamped Langevin diffusion targeting the posterior distribution of interest. This discretization is asymptotically unbiased for Gaussian targets and shown to converge in an accelerated manner for any target that is [math]-strongly log-concave (i.e., requiring in the order of [math] iterations to converge, similar to accelerated optimization schemes), comparing favorably to Pereyra, Vargas Mieles, and Zygalakis [SIAM J. Imaging Sci., 13 (2020), pp. 905–935], which is only provably accelerated for Gaussian targets and has bias. For models that are not smooth, the algorithm is equivalent to a Leimkuhler–Matthews discretization of a Langevin diffusion targeting a Moreau–Yosida approximation of the posterior distribution of interest and hence achieves a significantly lower bias than conventional unadjusted Langevin strategies based on the Euler–Maruyama discretization. For targets that are [math]-strongly log-concave, the provided nonasymptotic convergence analysis also identifies the optimal time step, which maximizes the convergence speed. The proposed methodology is demonstrated through a range of experiments related to image deconvolution with Gaussian and Poisson noise with assumption-driven and data-driven convex priors. Source codes for the numerical experiments of this paper are available from https://github.com/MI2G/accelerated-langevin-imla.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"17 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Bayesian Imaging by Relaxed Proximal-Point Langevin Sampling\",\"authors\":\"Teresa Klatzer, Paul Dobson, Yoann Altmann, Marcelo Pereyra, Jesus Maria Sanz-Serna, Konstantinos C. Zygalakis\",\"doi\":\"10.1137/23m1594832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1078-1117, June 2024. <br/> Abstract.This paper presents a new accelerated proximal Markov chain Monte Carlo methodology to perform Bayesian inference in imaging inverse problems with an underlying convex geometry. The proposed strategy takes the form of a stochastic relaxed proximal-point iteration that admits two complementary interpretations. For models that are smooth or regularized by Moreau–Yosida smoothing, the algorithm is equivalent to an implicit midpoint discretization of an overdamped Langevin diffusion targeting the posterior distribution of interest. This discretization is asymptotically unbiased for Gaussian targets and shown to converge in an accelerated manner for any target that is [math]-strongly log-concave (i.e., requiring in the order of [math] iterations to converge, similar to accelerated optimization schemes), comparing favorably to Pereyra, Vargas Mieles, and Zygalakis [SIAM J. Imaging Sci., 13 (2020), pp. 905–935], which is only provably accelerated for Gaussian targets and has bias. For models that are not smooth, the algorithm is equivalent to a Leimkuhler–Matthews discretization of a Langevin diffusion targeting a Moreau–Yosida approximation of the posterior distribution of interest and hence achieves a significantly lower bias than conventional unadjusted Langevin strategies based on the Euler–Maruyama discretization. For targets that are [math]-strongly log-concave, the provided nonasymptotic convergence analysis also identifies the optimal time step, which maximizes the convergence speed. The proposed methodology is demonstrated through a range of experiments related to image deconvolution with Gaussian and Poisson noise with assumption-driven and data-driven convex priors. Source codes for the numerical experiments of this paper are available from https://github.com/MI2G/accelerated-langevin-imla.\",\"PeriodicalId\":49528,\"journal\":{\"name\":\"SIAM Journal on Imaging Sciences\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Imaging Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1594832\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1594832","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Accelerated Bayesian Imaging by Relaxed Proximal-Point Langevin Sampling
SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1078-1117, June 2024. Abstract.This paper presents a new accelerated proximal Markov chain Monte Carlo methodology to perform Bayesian inference in imaging inverse problems with an underlying convex geometry. The proposed strategy takes the form of a stochastic relaxed proximal-point iteration that admits two complementary interpretations. For models that are smooth or regularized by Moreau–Yosida smoothing, the algorithm is equivalent to an implicit midpoint discretization of an overdamped Langevin diffusion targeting the posterior distribution of interest. This discretization is asymptotically unbiased for Gaussian targets and shown to converge in an accelerated manner for any target that is [math]-strongly log-concave (i.e., requiring in the order of [math] iterations to converge, similar to accelerated optimization schemes), comparing favorably to Pereyra, Vargas Mieles, and Zygalakis [SIAM J. Imaging Sci., 13 (2020), pp. 905–935], which is only provably accelerated for Gaussian targets and has bias. For models that are not smooth, the algorithm is equivalent to a Leimkuhler–Matthews discretization of a Langevin diffusion targeting a Moreau–Yosida approximation of the posterior distribution of interest and hence achieves a significantly lower bias than conventional unadjusted Langevin strategies based on the Euler–Maruyama discretization. For targets that are [math]-strongly log-concave, the provided nonasymptotic convergence analysis also identifies the optimal time step, which maximizes the convergence speed. The proposed methodology is demonstrated through a range of experiments related to image deconvolution with Gaussian and Poisson noise with assumption-driven and data-driven convex priors. Source codes for the numerical experiments of this paper are available from https://github.com/MI2G/accelerated-langevin-imla.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.