{"title":"搅拌速度对环境空气冷等离子体亚甲基蓝褪色动力学的影响","authors":"Alessandra Mbroczkoski Pereira, Péricles Inácio Khalaf","doi":"10.1002/kin.21755","DOIUrl":null,"url":null,"abstract":"<p>This research investigates the kinetics of methylene blue (MB) discoloration using ambient air cold plasma, with a focus on the impact of agitation speed (100 and 750 rpm). The study revealed pseudo-first-order kinetics for MB discoloration, pinpointing optimal conditions at 35.00°C and 100 rpm. These parameters minimized half-life times, correlated with observed <i>k<sub>obs</sub></i> values. A decreasing pH trend, more pronounced at 750 rpm, was attributed to increased acidic nitrogen species (HNO<sub>3</sub> and HNO<sub>2</sub>) production, adversely affecting dye discoloration. Concurrently, enhanced electrolyte concentration was noted from rising conductivity due to plasma production of reactive species followed by solubilization in the aqueous phase. The calculated thermodynamic activation parameters comprised: <i>E<sub>a</sub></i> = 7.96 kJ mol<sup>−1</sup>, <i>ΔH</i><sup>‡</sup> = +5.53 kJ mol<sup>−1</sup>, <i>ΔS</i><sup>‡</sup> = −253.23 J K<sup>−1</sup> mol<sup>−1</sup>, and <i>ΔG</i><sup>‡</sup> = +79.77 kJ mol<sup>−1</sup> (100 rpm); and <i>E<sub>a</sub></i> = 12.94 kJ mol<sup>−1</sup>, Δ<i>H</i><sup>‡</sup> = +13.78 kJ mol<sup>−1</sup>, <i>ΔS</i><sup>‡</sup> = −239.06 J K<sup>−1</sup> mol<sup>−1</sup>, and <i>ΔG</i><sup>‡</sup> = +80.58 kJ mol<sup>−1</sup>, (750 rpm). The lowest <i>E<sub>a</sub></i> and <i>ΔG</i><sup>‡</sup> values at 100 rpm reinforced lower agitation favoring the reaction. The study demonstrated a linear decay of the reaction rate constant with the square root of ionic strength. This result, besides the negative activation entropy and moderate activation enthalpy led to a proposition to the determinant step for the transition state formation, involving an associative step between a solvated electron and the protonated substrate. The optimal dye discoloration rate and energy yield were observed at 35.00°C and 100 rpm, with values of 97.2% and 3.371 × 10<sup>−2</sup> g kW<sup>−1</sup> h<sup>−1</sup>, respectively.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"56 12","pages":"718-731"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of agitation speed on methylene blue discoloration kinetics via ambient air cold plasma\",\"authors\":\"Alessandra Mbroczkoski Pereira, Péricles Inácio Khalaf\",\"doi\":\"10.1002/kin.21755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research investigates the kinetics of methylene blue (MB) discoloration using ambient air cold plasma, with a focus on the impact of agitation speed (100 and 750 rpm). The study revealed pseudo-first-order kinetics for MB discoloration, pinpointing optimal conditions at 35.00°C and 100 rpm. These parameters minimized half-life times, correlated with observed <i>k<sub>obs</sub></i> values. A decreasing pH trend, more pronounced at 750 rpm, was attributed to increased acidic nitrogen species (HNO<sub>3</sub> and HNO<sub>2</sub>) production, adversely affecting dye discoloration. Concurrently, enhanced electrolyte concentration was noted from rising conductivity due to plasma production of reactive species followed by solubilization in the aqueous phase. The calculated thermodynamic activation parameters comprised: <i>E<sub>a</sub></i> = 7.96 kJ mol<sup>−1</sup>, <i>ΔH</i><sup>‡</sup> = +5.53 kJ mol<sup>−1</sup>, <i>ΔS</i><sup>‡</sup> = −253.23 J K<sup>−1</sup> mol<sup>−1</sup>, and <i>ΔG</i><sup>‡</sup> = +79.77 kJ mol<sup>−1</sup> (100 rpm); and <i>E<sub>a</sub></i> = 12.94 kJ mol<sup>−1</sup>, Δ<i>H</i><sup>‡</sup> = +13.78 kJ mol<sup>−1</sup>, <i>ΔS</i><sup>‡</sup> = −239.06 J K<sup>−1</sup> mol<sup>−1</sup>, and <i>ΔG</i><sup>‡</sup> = +80.58 kJ mol<sup>−1</sup>, (750 rpm). The lowest <i>E<sub>a</sub></i> and <i>ΔG</i><sup>‡</sup> values at 100 rpm reinforced lower agitation favoring the reaction. The study demonstrated a linear decay of the reaction rate constant with the square root of ionic strength. This result, besides the negative activation entropy and moderate activation enthalpy led to a proposition to the determinant step for the transition state formation, involving an associative step between a solvated electron and the protonated substrate. The optimal dye discoloration rate and energy yield were observed at 35.00°C and 100 rpm, with values of 97.2% and 3.371 × 10<sup>−2</sup> g kW<sup>−1</sup> h<sup>−1</sup>, respectively.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":\"56 12\",\"pages\":\"718-731\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21755\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21755","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of agitation speed on methylene blue discoloration kinetics via ambient air cold plasma
This research investigates the kinetics of methylene blue (MB) discoloration using ambient air cold plasma, with a focus on the impact of agitation speed (100 and 750 rpm). The study revealed pseudo-first-order kinetics for MB discoloration, pinpointing optimal conditions at 35.00°C and 100 rpm. These parameters minimized half-life times, correlated with observed kobs values. A decreasing pH trend, more pronounced at 750 rpm, was attributed to increased acidic nitrogen species (HNO3 and HNO2) production, adversely affecting dye discoloration. Concurrently, enhanced electrolyte concentration was noted from rising conductivity due to plasma production of reactive species followed by solubilization in the aqueous phase. The calculated thermodynamic activation parameters comprised: Ea = 7.96 kJ mol−1, ΔH‡ = +5.53 kJ mol−1, ΔS‡ = −253.23 J K−1 mol−1, and ΔG‡ = +79.77 kJ mol−1 (100 rpm); and Ea = 12.94 kJ mol−1, ΔH‡ = +13.78 kJ mol−1, ΔS‡ = −239.06 J K−1 mol−1, and ΔG‡ = +80.58 kJ mol−1, (750 rpm). The lowest Ea and ΔG‡ values at 100 rpm reinforced lower agitation favoring the reaction. The study demonstrated a linear decay of the reaction rate constant with the square root of ionic strength. This result, besides the negative activation entropy and moderate activation enthalpy led to a proposition to the determinant step for the transition state formation, involving an associative step between a solvated electron and the protonated substrate. The optimal dye discoloration rate and energy yield were observed at 35.00°C and 100 rpm, with values of 97.2% and 3.371 × 10−2 g kW−1 h−1, respectively.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.