{"title":"低维内在维度揭示了基于梯度学习的深度神经网络的阶段性转变","authors":"Chengli Tan, Jiangshe Zhang, Junmin Liu, Zixiang Zhao","doi":"10.1007/s13042-024-02244-x","DOIUrl":null,"url":null,"abstract":"<p>Deep neural networks complete a feature extraction task by propagating the inputs through multiple modules. However, how the representations evolve with the gradient-based optimization remains unknown. Here we leverage the intrinsic dimension of the representations to study the learning dynamics and find that the training process undergoes a phase transition from expansion to compression under disparate training regimes. Surprisingly, this phenomenon is ubiquitous across a wide variety of model architectures, optimizers, and data sets. We demonstrate that the variation in the intrinsic dimension is consistent with the complexity of the learned hypothesis, which can be quantitatively assessed by the critical sample ratio that is rooted in adversarial robustness. Meanwhile, we mathematically show that this phenomenon can be analyzed in terms of the mutable correlation between neurons. Although the evoked activities obey a power-law decaying rule in biological circuits, we identify that the power-law exponent of the representations in deep neural networks predicted adversarial robustness well only at the end of the training but not during the training process. These results together suggest that deep neural networks are prone to producing robust representations by adaptively eliminating or retaining redundancies. The code is publicly available at https://github.com/cltan023/learning2022.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"48 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-dimensional intrinsic dimension reveals a phase transition in gradient-based learning of deep neural networks\",\"authors\":\"Chengli Tan, Jiangshe Zhang, Junmin Liu, Zixiang Zhao\",\"doi\":\"10.1007/s13042-024-02244-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep neural networks complete a feature extraction task by propagating the inputs through multiple modules. However, how the representations evolve with the gradient-based optimization remains unknown. Here we leverage the intrinsic dimension of the representations to study the learning dynamics and find that the training process undergoes a phase transition from expansion to compression under disparate training regimes. Surprisingly, this phenomenon is ubiquitous across a wide variety of model architectures, optimizers, and data sets. We demonstrate that the variation in the intrinsic dimension is consistent with the complexity of the learned hypothesis, which can be quantitatively assessed by the critical sample ratio that is rooted in adversarial robustness. Meanwhile, we mathematically show that this phenomenon can be analyzed in terms of the mutable correlation between neurons. Although the evoked activities obey a power-law decaying rule in biological circuits, we identify that the power-law exponent of the representations in deep neural networks predicted adversarial robustness well only at the end of the training but not during the training process. These results together suggest that deep neural networks are prone to producing robust representations by adaptively eliminating or retaining redundancies. The code is publicly available at https://github.com/cltan023/learning2022.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02244-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02244-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Low-dimensional intrinsic dimension reveals a phase transition in gradient-based learning of deep neural networks
Deep neural networks complete a feature extraction task by propagating the inputs through multiple modules. However, how the representations evolve with the gradient-based optimization remains unknown. Here we leverage the intrinsic dimension of the representations to study the learning dynamics and find that the training process undergoes a phase transition from expansion to compression under disparate training regimes. Surprisingly, this phenomenon is ubiquitous across a wide variety of model architectures, optimizers, and data sets. We demonstrate that the variation in the intrinsic dimension is consistent with the complexity of the learned hypothesis, which can be quantitatively assessed by the critical sample ratio that is rooted in adversarial robustness. Meanwhile, we mathematically show that this phenomenon can be analyzed in terms of the mutable correlation between neurons. Although the evoked activities obey a power-law decaying rule in biological circuits, we identify that the power-law exponent of the representations in deep neural networks predicted adversarial robustness well only at the end of the training but not during the training process. These results together suggest that deep neural networks are prone to producing robust representations by adaptively eliminating or retaining redundancies. The code is publicly available at https://github.com/cltan023/learning2022.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems