Elisa Baioni, Antoine Lejay, Géraldine Pichot, Giovanni Michele Porta
{"title":"广义渗透界面条件下一维非连续介质中的扩散建模:理论与算法","authors":"Elisa Baioni, Antoine Lejay, Géraldine Pichot, Giovanni Michele Porta","doi":"10.1137/23m1590846","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2202-A2223, August 2024. <br/> Abstract. Diffusive transport in media with discontinuous properties is a challenging problem that arises in many applications. This paper focuses on one dimensional discontinuous media with generalized permeable boundary conditions at the discontinuity interface. It presents novel analytical expressions from the method of images to simulate diffusive processes, such as mass or thermal transport. The analytical expressions are used to formulate a generalization of the existing Skew Brownian Motion, HYMLA, and Uffink’s method, here named as GSBM, GHYMLA, and GUM, respectively, to handle generic interface conditions. The algorithms rely upon the random walk method and are tested by simulating transport in a bimaterial and in a multilayered medium with piecewise constant properties. The results indicate that the GUM algorithm provides the best performance in terms of accuracy and computational cost. The methods proposed can be applied for simulation of a wide range of differential problems.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"41 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Diffusion in One Dimensional Discontinuous Media under Generalized Permeable Interface Conditions: Theory and Algorithms\",\"authors\":\"Elisa Baioni, Antoine Lejay, Géraldine Pichot, Giovanni Michele Porta\",\"doi\":\"10.1137/23m1590846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2202-A2223, August 2024. <br/> Abstract. Diffusive transport in media with discontinuous properties is a challenging problem that arises in many applications. This paper focuses on one dimensional discontinuous media with generalized permeable boundary conditions at the discontinuity interface. It presents novel analytical expressions from the method of images to simulate diffusive processes, such as mass or thermal transport. The analytical expressions are used to formulate a generalization of the existing Skew Brownian Motion, HYMLA, and Uffink’s method, here named as GSBM, GHYMLA, and GUM, respectively, to handle generic interface conditions. The algorithms rely upon the random walk method and are tested by simulating transport in a bimaterial and in a multilayered medium with piecewise constant properties. The results indicate that the GUM algorithm provides the best performance in terms of accuracy and computational cost. The methods proposed can be applied for simulation of a wide range of differential problems.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1590846\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1590846","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Modeling Diffusion in One Dimensional Discontinuous Media under Generalized Permeable Interface Conditions: Theory and Algorithms
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2202-A2223, August 2024. Abstract. Diffusive transport in media with discontinuous properties is a challenging problem that arises in many applications. This paper focuses on one dimensional discontinuous media with generalized permeable boundary conditions at the discontinuity interface. It presents novel analytical expressions from the method of images to simulate diffusive processes, such as mass or thermal transport. The analytical expressions are used to formulate a generalization of the existing Skew Brownian Motion, HYMLA, and Uffink’s method, here named as GSBM, GHYMLA, and GUM, respectively, to handle generic interface conditions. The algorithms rely upon the random walk method and are tested by simulating transport in a bimaterial and in a multilayered medium with piecewise constant properties. The results indicate that the GUM algorithm provides the best performance in terms of accuracy and computational cost. The methods proposed can be applied for simulation of a wide range of differential problems.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.